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Central Baffin Electromagnetic Experiment 
(CBEX), Phase 2 

Shane Evans, Alan G. Jones, Jessica Spratt, and John Katsube 

Evans, S., Jones, A.G., Spratt, J., and Katsube, J., 2003: Central Baffin Electromagnetic 
Experiment (CBEX), Phase 2; Geological Survey of Canada, Current Research 2003-C24, 10 p. 

Abstract: As a part of the Central Baffin Multidisciplinary Project (a collaborative effort of the Geological 
Survey of Canada, The Canada-Nunuvut Geoscience Centre, and the Polar Continental Shelf Project), a 
45 station, 500 km long regional-scale magnetotelluric profile was acquired. The profile crosses the northern 
margin of the Trans-Hudson Orogen and extends northward into the Archean Rae Craton. To the south, the 
profile crosses the Paleoproterozoic Piling Group. The primary goal of the experiment was to determine 
major geological boundaries by delineating regional electrical structures. Preliminary analysis shows that 
the conductive Astarte River Formation can be mapped and used as a proxy for the base of the Piling Group. 
Analysis has also revealed a high conductivity contrast between the Piling Group metasedimentary rocks 
and the northern Archean granite and gneissic complexes. Laboratory results indicate that the conductivity 
in the Astarte River Formation is due to the high content of interconnected graphite. 

Résumé : Un profil magnétotellurique d’étendue régionale, composé de 45 stations et s’étirant sur une 
longueur de 500 km, a été réalisé au cours des deux derniers étés dans le cadre du Projet scientifique 
multidisciplinaire de l’île de Baffin centrale (une initiative menée en collaboration par la Commission 
géologique du Canada, le Bureau géoscientifique Canada-Nunavut et l’Étude du plateau continental 
polaire). Ce profil recoupe la marge septentrionale de l’orogène trans-hudsonien et se prolonge vers le nord 
dans le craton de Rae de l’Archéen. Au sud, le profil recoupe le Groupe de Piling du Paléoprotérozoïque. Le 
but principal de l’expérience consistait à définir les principales limites géologiques en délimitant les struc­
tures électriques d’étendue régionale. L’analyse provisoire des données démontre que la Formation 
d’Astarte River, à comportement conducteur, peut être cartographiée et servir d’indicateur indirect de la 
base du Groupe de Piling. Un autre résultat de l’analyse tient à l’identification d’un contraste marqué de 
conductivité entre les roches métasédimentaires du Groupe de Piling et les complexes de granite et de gneiss 
de l’Archéen au nord. Les résultats obtenus en laboratoire indiquent que la conductivité de la Formation 
d’Astarte River est attribuable à sa teneur élevée en graphite à cristaux jointifs. 
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OVERVIEW 

During July and August of 2001 and 2002, magnetotelluric 
(MT) measurements were made on Baffin Island, Nunavut, 
Canada (Jones et al., 2002b). The magnetotelluric surveys 
were undertaken as part of the Geological Survey of Canada’s 
multidisciplinary Central Baffin project to study the northern 
margin of the Paleoproterozoic Trans-Hudson Orogen (Corrigan 
et al., 2001; Scott et al., 2002, 2003). In 2001, broadband 
(1000–0.001Hz) and long-period (20–10 000 s) data were 
recorded at 15 locations approximately equispaced along the 
300 km long northwest-southeast profile (Fig. 1). In 2002, 30 broad-
bandmeasurements were made at stations located between the 
2001 stations and beyond, thus extending the profile 200 km 
northward onto the Archean Rae Craton and outside the pro­
ject area (Fig. 1). The survey line thus comprises 15 long-
period stations and 45 broadband stations with a total profile 
length of approximately 500 km. 

The Central Baffin project area (Fig. 1) straddles the north-
ern margin of the eastern segment of the ca. 1.8 Ga Trans-
Hudson Orogen (Hoffman, 1988; Lewry and Collerson, 
1990), a Himalayan-scale collisional mountain belt that is 
exposed from Greenland in the east, across Baffin Island and 
beneath Hudson Bay, to Manitoba and Saskatchewan in the 
west. The northern part of the project area is underlain by var­
ious orthogneiss, metamorphosed sedimentary and volcanic 
rocks of the Mary River Group, and younger felsic plutonic 
rocks, all of Archean age and ascribed to the Rae Craton 
(Jackson, 1969; Bethune and Scammell, 1997; Corrigan 
et al., 2001; Scott et al., 2002, 2003). The central part of the 
area is underlain by siliciclastic, carbonaceous, and mafic 
volcanic rocks of the Paleoproterozoic Piling Group (Morgan 
et al., 1975, 1976; Morgan, 1983; Henderson et al., 1988, 
1989; Henderson and Henderson, 1994; St-Onge et al., 2001, 
2002). 

The primary goal of the magnetotelluric experiments was 
to determine the subsurface geometry of major geological 
boundaries, particularly between Archean rocks to the north 
and Paleoproterozoic continental-margin units to the south. 
Within the Piling Group lies a black shale and sulphide-facies 
iron-formation unit, the Astarte River Formation. Given its 
enhanced electrical conductivity, this formation is a particular 
horizon for electromagnetic imaging of crustal-scale struc­
tural geometry. 

MAGNETOTELLURIC DATA 
ACQUISITION AND QUALITY 

Two different acquisition systems were used during the two 
summers of fieldwork. In 2001, both long-period (LiMS) and 
broadband (V5-2000) magnetotelluric measurements were 
taken at 15 sites (Jones et al., 2002b). The GSC-designed 
LiMS system acquires long-period magnetotelluric data at 
periods of 20 to 10 000 s, probing the middle crust to upper 
mantle, by recording five components of the time-varying 
electromagnetic field, i.e. the two horizontal components of 

the electric field (Ex, Ey) and all three components of the 
magnetic field (Hx, Hy, Hz). The systems remained at each 
site for 4 to 5 weeks from July to mid-August. The sites were 
visited whenever helicopters were available in order to mini­
mize data loss due to local wildlife. Data loss was a major 
issue at sites baf003 and baf013, where wolves chewed up 
electrode lines. 

Broadband measurements, in the band of 0.001 to 1000 s, 
were made using two Phoenix MTU V5-2000 systems. With 
these systems, the depth of investigation is typically from a 
few kilometres down to the lower crust. The shallow occur­
rence of permafrost prevented the installation of the vertical 
magnetic field sensor, and thus only four components of the 
electromagnetic field were measured (Ex, Ey, Hx, and Hy). 
The MTU systems recorded for a period of two days at each 
site. Broadband measurements were taken at a total of 45 sta­
tions, i.e. at 15 sites during the summer of 2001 and at 30 sites 
during the 2002 field season (including the 10-site extension 
to the northwest). 

One of the problems encountered in these two surveys 
was very high contact resistances between electrodes, espe­
cially at sites with little surficial cover due the recent retreat of 
the Barnes Ice Cap. In magnetotellurics, we strive to have 
resistance between the electrodes below 10 kΩ to ensure good 
ground contact. At the worst site (001), situated in a boulder 
field, resistances were measured at greater than 2 MΩ. Such 
high contact resistances result in capacitive coupling with the 
ground becoming important and with the consequence that 
the ground acts as a low-pass filter to the electric signal. This 
can be seen in the data from sites baf001 and baf201 where a 
significant decrease occurs in the apparent resistivity and 
phase at a period less than 0.1 s (Fig. 2). 

Electric-field distortions due to local heterogeneities were 
strong at some sites and can be attributed to current channel-
ling. The most severe distortions are seen at the sites located 
in river valleys (sites baf003 and baf205) and result in phases 
shifting into the wrong quadrant for two-dimensional model-
ling. In severe cases of distortion, it may only be possible to 
extract information about one of the two modes. 

PROCESSING AND ANALYSIS 

Magnetotelluric data consist of a number of time series that 
reflect temporal changes in the Earth’s magnetic and electric 
fields. The spectral ratio between the electric field and the 
perpendicular magnetic field provides information about the 
electrical properties of the subsurface. High-frequency sig­
nals contain information about shallow structure and low-fre­
quency signals are sensitive to deep structure. 

The first step in processing raw magnetotelluric data 
involves the spectral analysis of the time-series data using 
robust processing codes. Both the long-period magnetotel­
luric and the broadband data were processed using the Jones-
Jödicke code (Jones and Jödicke, 1984; method 6 in Jones 
et al., 1989). In the cases where two or more sites are 
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Figure 2. Magnetotelluric response curves derived from data acquired at sites baf003, baf003, baf201, and 
baf205 (see Fig. 1). Red curves are the responses for currents flowing perpendicular to the profile, and blue 
profiles are the responses for current flowing along the profile. 

recording concurrently, the remote reference technique been investigated. However, the presence of conductive sea­
(Gamble et al., 1979) is used to reduce the biasing effects of water within 70 km of the profile may affect the data at longer 
noise in the data. In the case of the long-period magne- periods. Strike angles and phase differences in decade-wide 
totelluric data, given that all 15 sites recorded simultaneously, bands for single-site analysis are shown in Figure 3 for four 
multiremote processing was possible. bands of data. A great variation of strike angles can be 

observed along the profile, and regions with consistent strikeThe magnetotelluric data were analyzed for galvanic dis- angles can be distinguished throughout. The electrical striketortions caused by small, near-surface inhomogeneities using direction correlates well with the surface observation of geo­the McNeice and Jones (2001) multisite, multifrequency dis- logical strike. A strike angle of 33° was determined to be mosttortion decomposition code, and to determine appropriate appropriate for the decomposition when all sites at all periodsstrike direction. Distortions due to coastal effects have not yet are being analyzed. The decomposition analysis has revealed 
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Figure 3. Single-site strike angles calculated at decade-wide bands between 1 and 10 000 s.
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Figure 5. Pseudo-sections showing apparent resistivity and phase from the raw data and 
calculated from the model for TM and TE modes. 
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that at some sites, processing artefacts 
have been introduced to the data in an 
effort to reduce the RMS misfit. This 
may be due to the variation in dimen­
sionality along the profile. In most cases, 
the artefacts occur at high frequencies; as 
a consequence, the interpretation of shal­
low features must be investigated further 
to ensure their robustness. As part of this 
distortion analysis, estimates are derived 
of the frequency-dependent magnetotel­
luric impedance tensor apparent resistiv­
ity and phase due to regional structures. 
The apparent resistivity and phase infor­
mation can then be imported into analysis 
and modelling software packages (e.g. 
WinGLink, Geotools) in order to derive a 
two-dimensional model from which geo­
logical interpretations are made. 

PRELIMINARY MODEL 

A preliminary two-dimensional resistiv­
ity-depth model is shown in Figure 4. It 
was obtained using the RLM2DI code of 
Rodi and Mackie (2001), using data from 
both the MT mode for current flowing 
parallel to strike (TE mode) and the MT 
mode for current flowing perpendicular 
to strike (TM mode). The theoretical 
response of the model fits observations 
very well in some parts of the profile and 
not no well in other parts (Fig. 5). The 
main misfit occurs at the longer period in 
the phase (100–1000 s). This is not an un­
common occurrence when trying to model 
a profile with a large number of stations. 
The modelling procedure nonetheless 
ensures low structural complexity, and sub-
sequent modelling to improve the fit will 
likely still have the following large-scale 
electrical structures: 

1.	 A conductive layer forms a basinal 
feature with a maximum depth of 
approximately 15 km between sites 
baf207 and baf010. This structure can 
be associated with the graphite-rich 
Astarte River Formation. 

2. A distinct contrast, to a depth of 
approximately 20 km, can be seen as 
we go northward from sites baf214 to 
baf216. This contrast is indicative of 
the contact between the southern 
Paleoproterozoic metasedimentary 
rocks and the northern reworked 
Archean Rae Craton. The resistive 
Rae Craton can be mapped to the 
northern end of the profile. 
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3.	 Beneath the Rae Craton is a lower crustal conductor 
whose northern extent appears similar to that of the over-
lying craton and that also extends beneath the Piling 
Group. Such lower crustal conductors have been observed 
pervasively around the world (Jones, 1992), although 
electrical properties of the lower crust of the Rae Craton 
are markedly different here from those in the western 
Churchill Province (Jones et al., 2000, 2002a). Although 
the cause of the enhanced conductivity of the lower conti­
nental crust is still contentious, it is clear that different for­
mation and deformation processes must have occurred 
here compared to the western Churchill Province. 

4.	 Closely associated resistive and conductive bodies south 
of site baf205 are possibly related to the Cumberland 
batholith and mafic–ultramafic intrusions 

INTERPRETATIONS 

These preliminary observations give good insight into the 
geometry of the regional structures along the profile. The 
Astarte River Formation is of particular interest as it is 
exposed over a large area and laboratory analyses show that 
the conducting phase is interconnected graphite. The Astarte 
River Formation is mapped between sites baf207 and baf010 
and can be used as a proxy for the base of the Piling Group as 
Piling Group rocks beneath the Astarte River Formation are 
at most 2 km thick (Scott et al. 2002, 2003). To the north, a 
high conductivity contrast between the Piling Group meta­
sedimentary rocks and the northern Archean Rae Craton 
places the contact between the two at approximately site 
baf011. 

A resistive body beneath sites baf001 to baf203 is spa­
tially associated with the Cumberland batholith. Beneath and 
north of this resistive body is an upper crustal conductor. 
Sulphides associated with the Bravo Lake Formation (Stacey 
and Pattison, 2003) may be the source of the conducting 
phase within this body. 

The lower crustal conductor seen in the northern half of 
the profile may be attributed to the Mary River Group. The 
imbrication of Archean basement or the emplacement of 
younger granitic bodies may explain why this feature is seen 
at such depths. Further localized analysis of this area may 
reveal the southern extent of this body and shed light onto 
questions about the basement beneath the Piling Group (Fig. 6). 
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