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Table 1. 

A = H/ B = H/ Unit 

? Mean val. (J Mean val. (J 

IZxxl V2/2 0.70 0.11 0.83 0.10 
<fIxx 17'/4 0.78 0.15 0.77 0.17 
IZxvl 0.5 0.88 0.10 0.55 0.08 
<fI,n 17'/2 1.56 0.25 1.60 0.26 
IZvxl 0.5 0.54 0.15 0.66 0.13 
<fIvx -17'/2 -1.51 0.28 -1.53 0.26 
IZvyl V212 0.71 0.14 0.78 0.09 
<fIyy 31!'/4 2.23 0.19 2.31 0.14 

Every component was perturbed choosing random num­
bers uniformly distributed over the range (-D, +D). 

P(k) = pl(k) + pNCk) k = I, ... ,50, (5) 

where the range was determined in such a way that the 
expectancy of the ratios: 

(Ex
N, E.,N)/(E/, E./) = (Et, E,N)/(E/, E,/) = cr, (6a) 

and 

(HxN, HxN)/(H/, H/) = (H/, H/)/(H/, H,/) = {3. (6b) 

For Cl and {3 fixed, the calculations were repeated 50 times 
using independent sets of random numbers to generate the 
noise fields pN. Mean values tu and standard deviations uij 

were computed. Results for Cl = I, {3 = 0.5 are presented in 
Table I where the proposed algorithm (called Unit) is 
compared to the "clean" reference A = H~, B = H~. The 
phases are given in radians. 
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Estimation Improvement by a Coherence-
Based Rejection Technique 
A/an G. lanes, Energy, Mines and Resources Canada: and 
Harlmul lodicke, Westfalen Wilhelms Univ., West 
Germany 

Reliable estimation of the transfer function(s) of a linear 
system is of paramount importance in many fields of re­
search, notably geophysics. The estimates are, however, 
biased by noise contributions on the various components of 
the system. Several techniques have been presented in the 
last 10 years for deriving more reliable and less biased 
estimates, particularly of the magnetotelluric impedance 
tensor elements. This paper addresses the question of 
whether it is useful, in certain circumstances, to reject some 
of the available realizations (or "raw estimates") from the 
smoothing procedure employed to determine the transfer 
function estimates. A rejection technique is proposed, based 
on the inspection of coherence functions as individual real­
izations are omitted, whereby more stable estimates of the 
transfer functions may be derived which exhibit less bias due 
to noise contributions. 

The technique is illustrated by applying it to synthetic data 
and to real data (magneto telluric impedance tensor element 
estimation). It is shown that superior estimates of the 
transfer functions result after applying the rejection tech­
nique-outliers are quickly located and rejected, random 
errors are reduced, bias errors are reduced, coherences are 
increased, and the estimates are more stable. 

Introduction 

It is relatively well known that the usual algorithms for 
estimating response functions give estimates that are biased 
by noise contributions occurring on the input and/or output 
realizations of the linear system under consideration. Re­
cently, several techniques were proposed in the field of 
magnetoteJluric (MT) data analysis to alleviate or circum­
vent the problems caused by noise-biased autospectral den­
sity estimates. The most powerful method to date appears to 
be the remote reference technique of Gamble et aJ. (1978), 
which utilizes a suggestion proposed by Akaike (1967) of 
employing time functions, so-called "instrumental varia­
bles" by Reiers~l (1950), that are correlated with the true 
input(s) and output(s) of the linear system but that are 
orthogonal to the noise components thereon. The "cross­
frequency" analysis method of Dekker and Hastie (1981) 
appears promising, as do the cyclic signal-to-noise ratio 
enhancement techniques of Kao and Rankin (1977) and 
Lienert et aJ. (1980). Other methods of bias removal were 
discussed in Goubau et aJ. (1978). 

However, all of the methods cited above are concerned 
with either which signals (or realizations) to employ to derive 
the estimates of the auto- and cross-spectral densities, or 
how to improve those estimates once they have been made. 
This paper discus~es a procedure that, by its very nature, 
addresses itself to a more fundamental point than those 
proposed above, namely how to construcl the auto- and 
cross-spectral densities. We propose a rejection technique, 
based on coherence, which results in transfer function 
estimates displaying less bias, smaller confidence intervals, 
and a higher overall coherence than the more usual analysis 
methods give. The technique complements those of Gamble 
et aI., Dekker an<l Hastie, Kao and Rankin, Lienert et aI., 
and Goubau et al. in that its employment does not prohibit 
utilizing any of the other methods-it can be used as one step 
in two-step processing of data. 

Procedure 

In this section, the procedure for the proposed transfer 
function estimation improvement technique is described 
with references to a single input/single output linear system. 
Extension to multiinput/multioutput systems is both simple 
and obvious. 

SlJloothed cross-spectral density estimates ex.\' (depen­
dence on frequency assumed) are constructed from averages 
of the raw estimates, for example, 

C- - x-* . y-
xy - • 

and 

(I) 

(The averaging algorithm employed is not of importance for 
this work.) 

From the averaged auto- and cross-spectra, an estimate SJ 
of the true response function S relating input x(1) to output 
yet) is given by 

- Cn' SJ = -_-" 
C")' 

(2a) 



52 Electrical Methods I 

and is well known to be downward-hiased by noise compo­
nent n,(t) on x(t) as 

, s 
E[Sd]=---

1+ E[R,] 
(2b) 

where E [] denotes expectation value, and R, is the input 
noise power to signal power ratio. Alternatively, it is possi­
ble to estimate S by estimator Su given by 

'. CVY 
5u = ---, 

CV" 
(3a) 

which can similarly be shown to be upward-biased by noise 
component nit) on yet) as 

E[S,,] = S( I + E[R,] (3b) 

where Rv is the output noise power-to-signal power ratio. If 

E [Rx] = E [RJ, then the estimator 

S = vU, (4) 

i.e., the geometric mean of equations (3a) and (4a), is an 
unbiased estimate of S. Obviously, without any a priori 
information as to which noise-signal ratio is largest (i .e., Rx 
or RI')' the true value will lie in the range [Sd,Sul, plus-minus 
the associated random error. The random error ,.2 may be 
estimated by any of the usual methods. 

For n independent raw estimates of Cx.\' , i.e., from n (.t,Yi ) 

pairs, the estimate of the ordinary coherence function be­
tween the input and the output is defined as 

I(C"y)1 2 

(Cxx)(CVY ) • 
(5) 

Omitting one of the data pairs, say the jth (X), f i), leads to a 
new estimate of the coherence derived from the (n - I) 
remaining (Xi,f;)ii; pairs, i.e., 

,0 ~ IC,l ) (Yxy)iij = ---'--- . 
Crx Cv it) 

'2 ' 0 . If (Yxy)ifj > Y;y, then the downward and upward biased 
estimates of the true transfer response function, derived 
from the reduced set of (n - I) pairs, can be considered to be 
superior to those estimates from the total data set of n pairs. 
Hence, deriving all the n coherence estimates (Y~Y)Nj.I.II· 
and ascertaining which value of j gives a maximum in 
(Y;Y)iij' say the kith value. identifies the pair of raw estimates 
(X. ,Y. which causes the greatest decrease in total coher-

I I " " " ., A A • 

ence. If (y',,)ii', > Y;v. then, (Sd)ii" and (S,,)ii" are supenor 
estimates of S than Sd and S,,' and vice versa. 

- , '2 . 
For (Y;y)ii" > Y,y. the procedure IS repeated f,?r !he 

remaining (n - I) estimates to detect the next pair (X", Yk,) 

whose omission causes the greatest increase in coherence. 
As before, if(Y}vlji.,.k, > (Y;v!'i k,. then (Sd)iik,J, and (S·u),ik,.k, 
are superior to (Sd)iik, and (SII)iik,. 

The cycle is repeated until a sufficient number of pairs, say 
m, (Xk , . . k,,,. Yk , • .) have been rejected. The point at which 
to terminate the cycle, i.e., the definition of a "sufficient 
number," may also be by either subjective or objective 
criteria. A subjective criterion is, for example, to remove the 
worst 10 percent (or 20 or 30 percent, etc.) of estimates. An 
objective criterion would involve, for example, performing 
the rejection cycle until the confidence interval is minimized. 
Alternatively, the cycle could be terminated when the coher-

ence function, estimated after rejecting m pairs, i.e., from 
the remaining (n - m) pairs is observed to maximize, i.e., 

(Y~.\')i4k, . . k", , < (Y~v)iik,k", > ()';")iik, . . k",,,· 

However, this criterion should not be adopted because, in 
practice, the estimated coherence function does not maxi­
mize since data pairs are rejected due to the inherent bias 
associated with the estimate. 

In this work, a form of the latter objective criterion is 
adopted because it leads to estimates of the true response 
function which display the highest SNRs, as inferred by the 
associated maximum in the estimate of the ordinary coher­
ence. However, the estimate of the ordinary coherence 
function, as defined by equation (5) is known to be a biased 
function. 

A more useful description of the coherence between two 
processes is offered by the estimate of the normalized 
transformed ordinary coherence function of Jones (1981). 

Between totally uncorrelated processes E [Nul = I, hence 
the value of Nxy indicates directly the coherent-to-incoher­
ent common signal ratio. The other properties of the NTOC 
function which make it preferable to ordinary coherence 
function, are detailed in lones (1981). Utilizing the above 
described NTOC function, the objective criterion chosen for 
terminating the rejection cycle was after m pairs (Xk ,. .k",' 

fk, . . k,) were identified and rejected such that the NTOC 
estimate maximized. 

Application 

Synthetic data. In order to illustrate the rejection proce­
dure, synthetic data were generated consisting of true signals 
plus randomly added noise contributions of various degree 
and intensity. The true signals were X = (3,2) and Y = (4,7), 
i.e., a sinusoidal input ofvl3 units amplitUde with an initial 
phase of 33.7 degrees, and an output of v'6s units amplitude 
with an initial phase of 60.3 degrees. Hence the linear system 
was a x2.24 amplifier with a 26.6 degree phase shift, i.e., 
S = (2, I). The synthetic data were generated by adding 
random numbers from a Gaussian distribution to a certain 
percentage of 100 (X, y) true values given above. The noise 
was added randomly to the four traces, i.e., Re(X) , Im(X), 
Re( n, and Im(X), independently of each other. Hence, the 
data represent estimates, at a single frequency, of X and Y 
from 100 independent realizations of the process. That the 
noise is added to the four data series in a totally independent 
manner may be considered a worst possible case since a 
highly noise-contaminated realization will result in a noise 
degraded pair, either [Re(Xi ), Im(Xi )] or [Re(Y,.), (m(Y,.)]. 

For the example to be considered in depth, 50 percent of 
the data were perturbed by noise contributions of standard 
deviation 2, e.g., 68 percent of the "noisy" values of trace 
Re(X) lay in the range 3 ± 2. The input signal power was 13 
units, the output signal power was 65 units, and the noise 
power on both components was 4 units, i.e., (22 + 22)12, the 
factor of2 arising from only 50 percent of the data containing 
noise contributions. Hence, the input SNR was 13/4 = 3.25, 
and the output SNR was 65/4 = 16.25, and from equations 
(2b) and Ob), 

, (2, l) 
E[Sdl = ( J) = (1.53. 0.76) 

1+-
3.25 
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FIG .. 1. Example c:>1 the application of the rejection technique 
applied to synthetic data. The true transfer function is given 
~y S = (2, 1): The. varijitio.ns 01 Re(S) and Im(S) are 
Illustrated as nOISY pairs (Aj, \j) and rejected (full lines with 
~rosses every 16 points). Tfley are bounded by their respec­
t~e upward Su and downward Bd biased estimates [equa­
tions (2a) and (3a), respectively), Variations of the estimates 
of t.he ordinary coher.ence ~y, the normalized transformed 
ordinary coherence N"y, and the radius of the circle of the 
confidence at the 95 percent confidence level f as complex 
pairs are rejected are also shown. 

and 

E[SlIl = (2, 1)(1 + -1-) = (2.12, 1.06). 
16.25 

Also, from equation (5), 

I 
E[Yxvl = . = 0.72, 

. (I + E[Rx])(l + EWvl) 

and, the expectation value of the random error at the 95 
percent confidence level is 

E[f5.9s1 = - 3.04 (I - 0.72) -- = 0,035. 2 (65 + 4) 
198 13 + 4 

It is instructive to examine the variation of the parameters 
as noisy data pairs are rejected for one particular run. 
Deriving the smoothed cross-spectral densities and then 
deriving Sd, 5'", S, 1-6.95, Yxyt and Nn for the total 100 pair 
data set gave .. 

and 

~d : (1.33, .88),} S = (1.58, 1.0 I) 
SII - (1.88, 1.55), 

P = 0.210, 
y2 = 0.73, 

N = 12.08. 

The 100 data pairs (X" r,) under consideration here were 
processed by the cyclic rejection procedure. The variation of 
• • • ·2 • 
Sd, S,,, S, r, Yxv , and N" as data pairs were rejected, up to a 
total of 80 pairs, is illustrated in Figure I, As shown in the 
figure, Nxv maximized after 67 of the pairs were rejected, at 
which point the estimates of the various parameters were 

and 

5'd = (2,04, 1.02), 
Su = (2,07, 1.04), 
5' = (2.05, 1.03), 
j. = 0,105, 

y2 = 0.99, 

N = 15.0. 

It may appear rather strange that 67 percent of the data pairs 
were rejected when only 50 percent were noise-contaminat­
ed, However, it must be remembered that the noise was 
added to each of the four traces independently, The esti­
mates are obviously far superior to the original ones from the 
total data set. The other points to note are: y~v does not 
maximize, S becomes worse as more points are ~ejected, ,2 
tends to increase as too many points are rejected, and Nxy 

displays only one maximum. These features were also 
unanimously displayed in all test runs made with those noise 
characteristics, and also in all runs with various combina­
tions of percentage noise contributions and noise power. 

Magnetotelluric data. The elements of the impedance 
tensor ~ are commonly derived by using multiple linear 
regression methods. For example, for element Zvx there 
exist two distinct solutions depending upon on which com­
ponent (either Ey or H,) the noise contribution is minimized 
in a least-squares sense. These solutions are, for element 
ZYXt 

A, Cxe . Cv.' - Cye • Cxv 
Zyx = - -, C.u ' CVY - Cry . C'x 

(6a) 

(6b) 

(dependency on frequency assumed), where e denotes E" x 
denotes H,,, and y denotes Hv. The two solutions are 
equivalent to considering, respectively, Ev as output and 
(Hx , Hy) as inputs, equation (6a); and H, as output and (En 
Hv) as inputs, equation (6b); and they minimize noise on 
their respective output. Both solutions are biased by noise 
occurring on their respective inputs, Assuming that the 
coherence between Hx and H, is small, which is important 
for obtaining stable estimates of the impedance tensor ele­
ments, Z:. is downward-biased mainly (but not exclusively) 
by noise' on H" whereas Z~x is upward-biased mainly by 

.', ·2 noise on E" The phases of Zvx and of Zvx are. however, not 
affected by noise contributions, and are equal. 

For a multiple input/single output linear system, there is a 
choice of which coherence function to employ for picking 
out the noise degraded realizations. The ordinary coherence 
function between the output and one of the inputs is consid­
ered very unsuitable. however, because it does not give a 
correct measure of the correlation existing between the two 
components when any other inputs have a measurable effect 
on the output. The two coherence functions that appear to be 
reasonable to employ are (I) the multiple coherence between 
the output and all the inputs, or (2) the partial coherence 
between the output and the input of interest. For the 
example to be illustrated here, the former of these was 
chosen. i,e., the mUltiple. or "predicted." coherence, 

Estimates of Zvx from equations (6a) and (6b), for a typical 
data set are illustrated. in terms of MT apparent resistivity, 
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FIG. 2. (a) The two solutions for Pa", indicated by dots (Pa1.~). and crosses (Pa2 ) when all the available data are employed. The 
standard deviations of Pal aM pi are indicated by the one-sided error bars drawn downward and upward, respectively. (b) 
Same as (a) but for the three solutions that result after the worst 5 percent of the available data have been rejected. (c) Same as 
(b) but when 20 percent of the available data have been rejected. (d) Same as (b) but when 50 percent of the available data have 
been rejected. ' 

in Figure 2a. The one-sided error bars are the standard 
deviations of the estimates, and are drawn upward for the 
solution "noise power in Hr minimized" (equation 6b), and 
downward for the solution "noise power in Ev minimized" 

(equation 6a). These estimates can be described as those that 
one would derive from a "normal" analysis of the available 
data. 

The available estimates were treated by the rejection 
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method described above to isolate and reject the worst 
realizations from 5 to 50 percent of the total. Figures 2b-2d 
display the apparent resistivities for 5, 20, and 50 percent 
rejection. The following points are worthy of note: the 
standard deviations of the estimates became quite small with 
increasing number of rejected realizations (this was mainly 
due to the increased mUltiple coherence). The shape of the 
two p" curves became smooth. Obvious outliers in the period 
range 60-100 s were detected and rejected at the 5 percent 
stage. For the short periods (T < 10 s) and the long periods 
(T> 1500 si, an important improvement is accomplished. At 
these periods, the bias error was extremely large due to the 
low SNRs because of (I) weak natural signals for periods 
T < 10 s, and (2) decreasing resolution of the magnetic field 
variations for periods T > 1500 s due to the sensors 
employed (induction coils). 

References 
Akaike, H., 1967, Some problems in the application of the cross­

spe.ctral method, in Advanced seminar on spectral analysis of time 
senes: B. Hams, Ed., John Wiley and Sons Ltd., 81-107. 

Dekker, D. L., and Hastie, L. M .. 1981, Sources of error and bias in 
a magneto telluric depth sounding of the Bowen Basin: Phys. 
Earth Plan. Int., 25. 219-225. 

Gam~le, T. D., Goubau, W. M., and Clarke, J .. 1978. Magnetotel­
lurlCs With a remote reference: Geophysics. 44. 53-68. 

Gou~au. W. M., qamble. T. D., and Clark. J .. 1978, Magnetotel­
lunc data analYSIS: Removal of bias: Geophysics, 43. 1157-1166. 

Jones. A. G .. 1981, Transformed coherence functions for multivari­
ate studies: IEEE Trans. Acoust., Speech, Signal Proc. ASSP-29 
317-319. . 

Kao .. D., and Rankin. D .. 1977. Enhancement of signal-to-noise 
ratlo m magnetotelluric data: Geophysics. 42, 103-110. 

Lienert, B. R .. Whitcomb, J. H., Phillips. R. J .. Reddy. I. K .. and 
Taylor. R. A .. 1980. Long term variations in magnetotelluric 
apparent resistivities observed near the San Andreas fault in 
~outhern California: J. Geomag. Geoelectr.. 32, 757-775. 

Relers~l, 0.. 1950. Identifiability of a linear relation between 
varlables which are subject to error: Econometrica. 18. 375-389. 

Estimation of the Magnetotelluric EM1.6 
Impedance Tensor by the €1 and €2 Norms 

Frands l. Turk. Motoro/a, Inc.; lames C. Rogers and 
Charles T. Young, Michigan Technological Univ. 

Magnetotelluric impedance tensor estimates have conven­
tionally been calculated using the least-squares (e2) formula­
tion. However, noise on one or more channels can lead to 
biased and scattered estimates. In this paper, the use of the 
least-absolute value (e l ) norm in estimating the impedance 
tensor is investigated. Use of the remote reference technique 
in recent years has reduced the effects of correlation be­
tween noise on different channels in most MT situations. 
However, significant amounts of conventional4-channel MT 
data still remain to be processed to reduce the effects of 
noise contamination. 

The £ I problem is formulated as a linear programming (LP) 
problem, using a modified version of the Simplex method of 
linear programming. Unlike the (;2 norm, which minimizes 
the summed squared errors, the El norm seeks to minimize 
the summed absolute value of the errors. Therefore, esti­
mates so obtained should be less susceptible to outlying 
points or "'flyers. " The processing technique is illustrated by 
applying noise to a set of MT data related by a known 
impedance. Comparisons of the e I and E2 estimates are made 
for various noise levels and types. 

In the magnetotelluric (MT) method of geophysical pros­
pecting. a linear relationship is assumed to exist between 
horizontal components of the electric field E and the magnet­
ic field H. The system is described at any frequency by the 
impedance tensor [~l where 

[E'] [Zu Z",] [H'] 
E" = Z",ZV\' Hv' 

(I) 

[~l = [~][IJJ. (2) 

and Cartesian coordinates with z directed downward are 
indicated. In principle, two independent observations of the 
four fields yield a solution. However, since all physical 
measurements are contaminated by noise, redundancy is 
used to improve the estimate. This work describes and 
compares two types of impedance tensor estimation: the 
least-squares (e2) method and the least absolute-error (e I) 
method. Comparisons of the two are presented for single 
station data, although the results are applicable to remote 
stations as well. 

Impedance estimation by the least-squares method 

With N observations of the fields, the least squares (e2) 

approach minimizes the term 

N 

[~21 = [~l: 2: (Ei - ~ HJ(E; P ~ H;)*. (3) 
i=1 

As pointed out by Sims (1969), this will minimize the error 
caused by noise on the E channels. Similar minimizations for 
the other channels yield four equations to solve for the 
elements Zu. and Zxv. Of the six pairs, the two which use the 
Ex-Hy and Ey-Hx reference field pair become unstable as the 
geology becomes one-dimensional. Using the H[Hy refer­
ence field pair, the £2 estimate for ZXy becomes 

where 

(HxH, *)(ExHy *) - (H,Hv *)(ExHx *) 

(H,H, *)(HyHy *) - (H,Hv *)(HyH, *) , 

I N 
(AB*) = - 2: A;B;*. 

N ;~I 

(4) 

(5) 

This will give an unbiased estimate of Zxv provided the fields 
are not polarized over the period of mea~urement, and noise 
on the channels is random and independent of the MT 
signals. In practice, to reduce the significance of periods 
with poor signal, a weighted average of equation (5) is 
normally computed. The weighting can be based on the 
coherency between orthogonal E-H pairs, the mUltiple co­
herency between measured and predicted E fields, etc. 
However, the circumstances under which each weighting 
type should be used are not well understood. After comput­
ing the weighted average of equation (5), the crosspower 
files often cannot be reprocessed with a different weight type 
since they are stored cumulatively. To use a different 
weighting, a new run must be started, or provisions must be 
made for storing all weighted crosspowers for later computa­
tion. 

Use of absolute error minimization 

An alternative to least-squares minimization proposed for 
geophysical data equation (2) when the data contain outlying 


