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It is clear, from (20), that for this case the multiplication 
number required is [Q + (Q + 1)/2] (L - 1)/2 instead of 
Q(L 1). 

From the above discussions we see that, by suitably arranging 
arithmetic operations, the number of multiplications required 
can be reduced by about 2S percent. In case that a serial! 
parallel multiplier (such as Am2SLS14 manufactured by 
Advanced Micro Devices, Inc.) is used for the filter imple­
mentation,. a 2S percent reduction on the multiplication opera­
tions means a 25 percent increase on the filter speed because 
almost all nonmultiplication operations can be performed 
during the first half multiplication cycle of the multiplier 
while unwanted less significant bits are being generated. 

IV. CONCLUSIONS 

In this paper we examine some problems on the implementa­
tion of digital interpolator using linear-phase FIR filters. A 
procedure for selecting parameters L, N, and Q is presented. 
It is shown that, except for one interpolated sample in Case 
A -2 where L is even and Q is odd, all (L - I) interpolated 
samples can be computed from the same set of Q original 
input samples. This fact can greatly simplify the design of the 
control section of interpolation filters. 

The symmetry property of the impulse· response of linear­
phase FIR filters is exploited. It is shown that, by suitably 
arranging arithmetic operations, the number of multiplication 
operations required can be reduced about 25 percent. If a 
serial/parallel multiplier is used for the filter implementation, 
a 25 percent reduction on the multiplication operations means 
a 2S percent increase on the filter speed. 
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Transfonned Coherence Functions for MuItivariate Studies 

ALAN G. JONES 

Abstract-In this paper, transformed coherence function estimates are 
deimed which display several desirable properties when compared with 
the conventional forms; 1) their probability distribution functions are 
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more nearly normal, 2) their mean values are normalized to a value of 
unity for totany uncorrelated data, and 3) their variartces are inde­
pendent of the true values. 

I. INTRODUCTION 

The magnitude-squared coherence function (MSC) between 
two joi~tly stationary random processes, x(t) and y(t), is de­
fined as 

2 

11(fW = Gxx(f) Gyy(f) 
(1) 

where Gxy(f), Gxx(f) and Gyy(f) are the theoretical cross­
and autospectral densities, respectively, at frequency f. The 
MSC can be estimated by ensemble averaging over various data 
segments, or by band averaging over adjoining frequency com­
ponents by a suitable spectral window, of the sample spectra 
to yield estimate C2 of 12. Both the MSC and its estimators 
are bounded by zero and unity. The necessity for determining 
smoothed estimators of (1) is described in detail in [11 . 

The MSC is a very useful indicator of various properties of 
the linear relationship between x(t) and y(t), that is, of the co­
herent common power between the two measured signals. A 
nonunity value infers either: 1) noise on x(t) and/or y(t), 2) 
the system relating x(t) to y(t) is nonlinear, or 3) that there 
are processes other than x(t) and y(t) involved. 

However, it is relatively well known that the estimators of 
(l) are biased estimators. For example, for the case of smooth­
ing by ensemble averaging, and assuming there to be no bias 
due to a misalignment (2], Nuttall and Carter (3J have shown 
that the bias of C2 is given by 

(2) 

where 12 is the theoretical MSC, C2 is the estimated MSC, 
and N is the number of time data segments employed. The es­
timator C2 of MSC 12 does not possess a probability distribu­
tion function (PDF) that has a normal (Gaussian) form, thus 
confidence limits and other statistical descriptors cannot be 
easily calculated (see [41 for graphs of the confidence bounds 
of the MSC at the 80 percent and 95 percent levels). 

11. NORMALIZED TRANSFORMED MAGNITUDE 
COHERENCE FUNCTION (NTMCF) 

It is suggested in [5] that application of R. A. Fisher's Z­
transformation [6] to the positive square root of the estimate 
of the MSC, called the magnitude coherence (MC), yields a 
function that has a nearly normal PDF. This transformed MC 
function TMC is given by 

T(f) '" arctanh (jr(f)I). (3) 

Its estimate T :::: arctanh(C), has a variance of 

2 A 1 
ur- = var (T(f)):::: 

T n 2 
(4) 

[7] where n is the number of degrees of freedom associated 
with the estimate. For ensemble averaging with nonoverlap­
ping data sets, rt:::: 2N. Empirical studies by [8] have con­
firmed that this transformation is valid for n> 20 with 0.3 < 
/2 < 0.98. The validity of the transformation may be ex­
tended to a larger range of 12 and for n > 8 if the estimate of 
the MC is first corrected for bias. Recent related work is re­
ported in [9]. 
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Fig. 1. Simultaneous recordings of the northward-directed component 
of the Earth's time-varying magnetic field as detected by a wire­
suspended (J) and a fluxgate (F) magnetometer. 

The TMC does not however lend itself to be used as a quan­
titative comparison between two estimates at the same f ob­
tained with differing N's, i.e., between two estimates with 
differing n's. In order to facilitate such a comparison, it is sug­
gested that the TMC estimate be normalized by the arctanh of 
the expectation value of the MC for two totally uncorrelated 
data sets. This latter value is given by 

arctanh «E [C~J)I/2) = arctanh ((;; t2) 
= (!; y/2 for n large (5) 

from (2) as "12 =: 0 for uncorrelated random processes. Hence, 
the estimate of the normalized transformed magnitude coher­
ence function (NTMC) is defined by 

A arctanh (C(!) 
N(!) = (6) 

arctanh «2/n)I/2) 

with a variance given by 

2 A 1 
0,::; = var (N(f» =: (n - 2) arctanh2 «2/n)l/2) (7) 

= 0.5 for n large. 

The following properties of the NTMC make it more prefer­
able to the estimate of the MSC or the estimate of the MC. 

1) Its mean is normalized to unity for two uncorrelated sig­
nals, hence indicating directly the coherent-to-incoherent com­
mon signal ratio. 

2) Its PDF is more nearly normal. 
3) Statistical parameters are easily calculated. 
4) The variance is independent of theNTMC itself, and is a 

value of 0.5 for N Le., independent of N also. 
In order to demonstrate the use of the NTMC compared 

with the MSC, Fig. 1 illustrates two recordings of the north­
ward-directed magnetic field variation with time as detected 
by two instruments of fundamentally very different operating 
principle (J, Jolivet torsion-band magnetometer; F, Fluxgate 
magnetometer) at the same locality and time. The estimate of 
the MSC spectrum was derived by smoothing over adjoining 
sample spectral estimates with the Bartlett spectral window 
[IO] (the exact equivalence between ensemble averaging and 
smoothing the sample spectrum with the Bartlett window, of 
sinc-squared form, is detailed in [5]) of constant-Q, with Q ::: 
0.3, to give the smoothed cross- and autospectral densities, 
then utilizing expression (I). The estimated MSC spectrum 
(C}F) is illustrated in Fig. 2 where, for periods less than 30s, it 
would be concluded that the two series' do not well correlate 
due to the small values of clF. However, the estimates of the 
NTMC spectrum, as derived from CiF after transformation 
then normalization according to (6), are for periods in the 
range 15-20 s all greater than 5, with a very clear maximum of 
8.7 at 65 s. The 95 percent confidence intervals of the esti­
mates of N JF , as derived from 1.96 (IN!(n)1/2, are plotted as 
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Fig. 2. Estimates of tbe MSC (CiF) and the NTMC (NJF) spectra be­
tween the two magnetic traces illustrated in Fig. 1. The 95 percent 
confidence intervals for the estimates of NJF are given by the vertical 
bars at the base of the figure, and the expectation value (E (N]) for 
uncorrelated data (i.e. unity) is shown by the dashedJine. 

vertical bars in the lower part of the figure, from which it is 
conclusive that the coherence between the traces is statistically 
meaningful to such short periods as 158. 

Ill. EXTENSION TO MULTIVARIATE SYSTEM 
COHERENCE FUNCTIONS 

The suggestion made in Section II can be generalized to de­
fine any estimate of a normalized transformed coherence func­
tion as being given by 

arctanh (C) A 

N (8) 

where C is the estimated magnitude coherence (ordinary, mul­
tiple, partial, etc.) and E[CJ] is the expectation value of the 
estimator of the coherence function when all processes in­
volved are totally uncorrelated. For example, for a p input­
single output linear system, the estimator of the multiple 
coherence function has an expectation value for totally uncor­
related data of 

p 

n 2p 
E[C~]mu1t (9) 

[8], and hence the normalized transformed multiple coher­
ence function is estimated by 

A arctanh (Cmult) 
Nmul t '" ar-ct-a-nh-«-p-/(-'-n-=2""p"'-»-:17::/2-) • (10) 

Similar expressions are possible for the normalized trans­
formed partial coherence functions. 

A more complete exposition of these functions, and the use 
thereof, for a two input-single output linear system, is given in 
[111. 

ACKNOWLEDGMENT 

The author wishes to express his gratitude to G. C. Carter 
and A. H. Nuttall for their many constructive comments on an 
earlier version of this manuscript. 

REFERENCES 

[lJ J. S. Bendat and A. G. Piersol, Random Data: Analysis and Mea­
surement Procedures. New York: Wiley, 1971, pp. 193-196. 

(2] G. C. Carter, "Bias in magnitude-squared coherence estimation 
due to misalignment," IEEE Trrms. Acoust., Speech, Signal Pro· 
cessing, vo!. ASSP-28, pp. 97-99, Feb. 1980. 

[3] A. H. Nuttall and G. C. Carter, "Bias of the estimate of the 
magnitude-squared coherence," IEEE Trans. Acoust., Speech, 
Signal Processing, vol. ASSP-24, pp. 582-583, Dec. 1976. 

[4] E. H. Scannell Jr. and G. C. Carter, "Confidence bounds for the 



IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-29, NO. 2,APRIL 1981 319 

magnitude-squared coherence estimates," IEEE Trans. Acoust.., 
Speech, Signal Processing, vol. ASSP-26, pp. 475-477, Oct. 1978. 

[5] G. M. Jenkins and D. G. Watts, Spectral Analysis and its Applica­
tions. San Francisco: Holden-Day, 1968, pp. 239-243, 379. 

[6] A. Hald,.Statistical Theory with Engineering Applications. New 
York: Wiley, 1952, pp. 608-609. 

[7) R. K. Otnes and L. Enochson, Digital Time Series Analysis. New 
York: Wiley-Interscience, 1972, pp. 352-353. 

[8] L. D. Enochson and N. R. Goodman, "Gaussian approximation 
to the distribution of sample coherence," paper A.F.F.D.L.T.R. 
65-57 Air Force Flight Dynamics Lab., Wright-Patterson A.F.B., 
OH, Feb. 1965. 

[9] A. H. Nuttall and G. C. Carter, "An approximation to the cumu­
lative distribution function of the magnitude-squared coherence 
function," IEEE Trans. Acoust., Speech, Signal Processing, to be 
published .. 

[10] M. S. Bartlett, An Introduction to Stochastic Processes with Spe­
cilll Reference to Methods and Applications. Cambridge: Cam­
bridge Univ. Press, 1953. 

[11] A. G. Jones, Geomagnetic Induction Studies in Southern Scot­
land, Ph.D. dissertation, Univ. Edinburgh, Edinburgh, Scotland, 
1977. 

Hyperstability and Adaptive Filtering 

M. G. LARIMORE 

Abstract-Recently, results from the area of system identification con­
cerning the concept of system hyperstability have been applied to the 
analysis of adaptive fdtering configurations. In particular, this analysis 
tool has allowed the development of a family of convergent adaptive re­
cursive digital fdtering algorithms, where the use of conventional gradi­
ent analysis techniques had proven .insufficient. , This correspondence 
provides a somewhat informal explanation of hyperstability analysis as 
might be useful to the adaptive signal processing community, and clari­
fies its implications and limitations. 

I. INTRODUCTION 

The concept of hyperstability has appeared primarily in the 
context of control system analysis, providing a powerful 
means of ~ssuring stability in a broad class of systems. For ex­
ample, it has recently appeared in the context of output error 
identification via the model reference adaptive structure [1]. 
It is interesting to note that the signal processing community 
has had little exposure to this analysis tool. Yet, the study 
and development of adaptive signal processing techniques has 
frequently been hampered by the complexity of time-varying 
parameter behavior. Convergence analysis of techniques com­
monly in use in signal processing relies largely on gradient ap­
proximation methods. Two innovative adaptive filtering tech­
niques of current interest involve the lattice and feedback 
structures, which do not lend themselves to convergence analy­
sis by conventional methods. This paper provides a somewhat 
informal explanation of hyperstability analysis as might be 
useful to the signal processing community, and hopefully will 
clarify its features and limitations. 

11. SYSTEM HYPERSTABILITY 

For our purposes, we draw on published work concerning 
the continuous time case [2], providing the obvious modifica-
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tions of definitions and properties when necessary. A rigorous 
treatment of the discrete time case can be found in [3). Con­
sider a discrete time-invariant linear system, controllable and 
observable, with a state realization, 

x(k + 1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k). (1) 

For signal processing applications, its input/output relation is 
often an adequate characterization: 

Y(z) 
G(z) = - = C(zI- A)-IB +D. 

U(z) 
(2) 

Note we have restricted the discussion to the scalar case for 
convenience ortly; the multiinput, multioutput case follows 
with the usual alterations [3). If we restrict the driving input 
u(k) to a particular class of well-behaved sequences, where 

Ko 

L u(l) y(1) < 'Y5, VKo >0 (3) 
1=0 

then the system is said to be asymptotically hyperstable if 

Hm IIx(k)11 = o. 
k -> 00 

(4) 

(Strictly speaking, hyperstability merely implies boundedness 
of the internal state; in this paper, we simply drop the'modi­
fier asymptotically for the sake of informality.) From an out­
put point of view, y(k) will also be bounded, and in the case 
of D = 0, i.e., G(z) has a proper rational form, y(k) must also 
converge to zero. 

The hyperstability theorem of Popov [41 claims that the sys­
tem G(z) is hyperstable if and only if G(z) is strictly positive 
real (SPR), i.e., on the unit circle contour, 

Re [G(z)] >0 z =ej(J. (5) 

Stated concisely, if a system has a SPR transfer function G(z), 
then for any input u(k) satisfying (3), the output y(k) will re­
main bounded. This is a slightly stronger variation of bounded 
input/bounded output (BIBO) stability, since it allows certain 
divergent inputs. 

Anderson notes [2) that this property is a specialization of 
the concept of system passivity. As a familiar physical exam­
ple, consider an input port ofa passive network, with a driving 
current and a voitage response. It is well known that a passive 
driving point impedance is positive real [5). To be precise, 
this discussion deals with a strictly passive network where 
proper placement of resistive elements assures internal dissipa­
tion. Then, there exists a state realization with each state vari­
able corresponding to an energy storage element. If the energy 
injected into the port's driving point 

E = iT u(t) i(t) dt 
o 

(6) 

is bounded, intuitively we would expect (as predicted by the 
hyperstability theorem) that the energy stored internally would 
eventually be dissipated, i.e., lIx(t)II-)o O. 

Ill. CLOSED-Loop STABILITY 

In the form outlined in the previous section, the system 
property of hyperstability is of little practical use. Its power 
becomes evident when we consider an input sequence u(k) de­
rived as a general memoryless function of the output y(k), pos­
sibly time varying and nonlinear. Fig. 1 indicates this feedback 
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