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Abstract: Decomposition of magnetotelluric data into a local galvanic 3D distortion matrix 
and a regional 2D Earth caused a quantum leap in our understanding of complex data and 
our ability to handle those data. The Groom-Bailey method is the most widely adopted tensor 
decomposition approach, and rightly so given its physical basis and its separation of distortion 
parameters into determinable and indeterminable parts. However, on occasion the 3D over 2D 
(3D/2D) decomposition fails in that the misfit of the model to the data is far greater than the 
data errors permit, and this failure is due to either the distortion model being invalid or to 
inappropriately small error estimates for the data. In this paper we describe and demonstrate 
our attempts to extend MT tensor decomposition to local galvanic 3D distortion of regional 3D 
data (3D/3D). There are insufficient data to accomplish this uniquely for a single MT site, so 
some approximations must be made. The approach we use is to assume that two neighboring 
sites sense the same regional structure if they are sufficiently close compared to the skin depth 
to the structure, but that the two sites have differing galvanic distortion matrices. We use a 
decomposition method similar to the Groom-Bailey one, but with a different parameterization, 
and we solve the problem using a Newton method. We demonstrate the method to a synthetic data 
set, and highlight the difficulties that result as a consequence of inherent parameter-resolution 
instabilities. 

1. INTRODUCTION 

The presence of electrical charges near electrical conductivity transitions in the Earth 
cause galvanic distortions of magnetotelluric (MT) data to varying degrees. When such 
charges occur associated with local, near-surface inhomogeneities there is an inherent 
spatial aliasing problem which must be addressed prior to interpretation. The basic 
formulation of galvanic distortion consists of the tensor decomposition of the measured 
(superscript D) distorted electromagnetic fields (E, H) into a series of regional fields 
and distortion matrices (Wannamaker et aI., 1984; Habashy et aI., 1993; Chave and 
Smith, 1994): 

ED = EP, 

HD = E Qh = 1+ QhZ, 

H~ = [(A,B)+ QzZ]H, (13.1) 
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where P, Qh and Q; 
(Jiracek, 1990): 

P = (Prx Pr\') , 
Prx Pn · 

Three-dimensional electromagnetics 

are real valued and frequency-independent distortion matrices 

Qh = (Qxx 
Q,x 

and (13.2) 

and (A, B) is the vertical magnetic transfer function or tipper. Thus, the distortion of the 
regional MT transfer function can be written as: 

(13.3) 

where Z is the general regional impedance, ZD is the observed impedance, and I is the 
identity matrix. Similarly, the regional vertical field transfer function is distorted 

(13.4) 

where (A, B) is the regional transfer function and (A, B)D is the observed one. 
When the EM fields are observed in an arbitrary coordinate system that is not aligned 

with the strike angle of the regional structures, the observed impedance (Equation 13.3) 
becomes 

(13.5) 

where e is the azimuth angle respect to the regional strike, R is the Cartesian rotation 
matrix, and superscript T denotes transpose. 

Following this basic tensor decomposition, several authors developed different ap­
proaches to extract the regional impedances given the observed ones (Larsen, 1977; 
Groom and Bailey, 1989; Bahr, 1991; Zhang et aI., 1993; Chave and Smith, 1994; 
Smith, 1997). 

Most of the authors neglect galvanic magnetic distortion. The reason for this lies in 
the fact that the magnetic distortion in Equation (13.3) is Qh· Z, rather than Qh alone 
which describes the scattering. This product term is frequency-dependent, due to the 
frequency dependence of Z, and vanishes for low frequencies. For this reason magnetic 
galvanic distortion is usually ignored. lones and Groom (1993), Chave and Smith 
(1994) and Smith (1997) account for the magnetic term in their galvanic distortion of 
MT data, and Ritter and Banks (1998) consider the effects on the vertical field transfer 
functions. For distortion of controlled-source data there is the theoretical work of Qian 
and Pedersen (1992), while Li et al. (2000) study the anisotropy case, and Garcia et al. 
(2000) provide a case study of controlled-source data in which the magnetic distortion 
is taken into account. 

The most widely used decomposition technique is the one proposed by Groom and 
Bailey, 1989 (called GB). Two angles, twist and shear, describe the galvanic distortion 
of the regional electric field. There are two other distortion parameters, local anisotropy 
and site gain, that are unresolvable amplitude scaling effects and are included in the 
regional impedance matrix. The anisotropy can be approximated by assuming that 
the asymptote of the apparent resistivity curves for both off-diagonal terms for the 
high frequency should be coincident. The remaining distortion parameter, site gain, is 
usually small and can be addressed using either additional geophysical or geological 
information or determined as part of the inversion procedure. 
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When applying MT for addressing mining scale problems, the frequencies of interest 
range from approximately 1 Hz to 20,000 Hz. Within the depth of penetration corre­
sponding to this frequency band most mineralized structures will show 30 inductive 
effects, and existing decomposition schemes are not valid as they assume regional 10 or 
20 Earth models. The first attempt to deal with distortion over 3D regional structures 
was that of Ledo et al. (1998), who assumed a 30/20/30 Earth, with the upper 
3D structures causing the galvanic distortion. Following their approach, conventional 
Groom-Bailey decomposition is performed at high frequencies, where the regional 
structures can be considered 20. Then they apply the derived distortion parameters to 
the data over the whole observational frequency range. Recently, Utada and Munekane 
(2000) presented a 30/30 decomposition method that makes use of the spatial deriva­
tives of the magnetic fields to estimate galvanic distortion. Their method requires a large 
number of stations located in a 20 array, and measurement of the vertical magnetic field 
at each site. Both of these are not common practice in mineral exploration MT surveys. 

In the present work we discuss our attempts to extend galvanic decomposition of the 
electric field to 30 regional Earth models. Two theoretical data sets are examined and 
decomposed using our approach, with varying degrees of success due to the inherent 
instabilities of the problem as posed. We conclude that this approach may prove fruitful, 
but that further work is required. 

2. 3D DECOMPOSITION 

Figure 1 shows a generalized model of galvanic and inductive interactions at a variety 
of depths and scales. The electromagnetic spectrum can be separated into four different 
bands depending on the effects observed. At the highest frequencies the shallow surficial 
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Figure 1. Cartoon of the different inductive and galvanic effects that appear in a MT mining scale survey. 
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inhomogeneities are the only source of galvanic distortion effects, and these can be 
described by a distortion tensor, CL. At lower frequencies the 3D distorting structures, 
if sufficiently elongate, will have a response that can be characterized as 2D. As the 
frequency decreases (and penetration depth increases) the 3D inhomogeneity causes 
3D inductive effects. At the lowest frequencies only the galvanic distortion of both the 
surficial (Cd and distorting body (C B) of the electric fields will remain, and a classical 
GB scheme could be applied to retrieve the combined distortion parameters C. For even 
lower frequencies the 3D inductive and galvanic effects from the 3D regional structure, 
the mineralized ore body, appear in the response curves. In this frequency range of 
interest, the distorted impedance can be decomposed into two inseparable distortion 
matrices and a regional 3D response: 

ZO = CZ = CLCBZ, (13.6) 

where CL is the distortion caused by the shallow structures, CB the distortions caused 
by the 3D structure, C is their combined effect, and Z the regional 3D response. We 
wish to determine the 3D impedance of the mineralized body, Z, given the observations 
ZO, and therefore need to extract the parameters of C. 

Given that only eight equations are obtained for each frequency from the observed 
impedance tensor for each station, and that the 3D distortion problem described by 
Equation (13.6) has 12 unknowns (4 complex impedances plus 4 distortion parameters), 
an approximation is required in order to solve the problem. We assume that two adjacent 
stations respond to the same 3D regional response ZO but different local galvanic 
effects, Cl and C2. This assumption reduces the problem to 16 x N equations and 
8 x N + 8 unknowns (4 impedances x 2 (complex) x N frequencies + 4 distortion 
parameters x 2 stations) for N frequencies, and the problem may have a solution. 

This approach is limited to situations where the distortion parameters are different at 
both sites but the regional parameters are the same. In the case of both stations being 
affected by the same galvanic distortion their responses should be identical (to within 
statistical error), then the problem has no solution as the real number of equations will 
be smaller than the number of parameters. 

3. DECOMPOSITION ALGORITHM 

Two different approaches have been applied to address this problem. The first one was to 
consider the distortion parameters as described in Equation (13.6), then the impedances 
recorded at two nearby sites can be rewritten as: 

ZO.1 = (Cl Ci) (Zrx Zn) 
C3 cl Z"X Zyr ' 

ZO.2 = (C1 C~) (Zrx Zrr) , (13.7) 
C3 C4 ZYX Zyy 

where the superscript index refers to each site. 
For this form, two different least-squares algorithms have been tried; one based on a 

Marquardt-Levenbergs scheme (Pedersen and Rasmussen, 1989) and the second using a 
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sequential quadratic programming method as implemented in the NAG 1 libraries. Both 
methods failed to solve the problem, and an inspection of the matrices revealed that 
the condition number was of the order of around 80, which is too big for the accuracy 
required to reach a minimum and invalidated the use of such algorithms. 

The second description used was similar to the GB approach (Groom and Bailey, 
1989), where the impedances for two neighboring sites can be decomposed and rewritten 
as: 

= Gi -r) Gi 

= Gi -r) Gi 

;i) (gi(1 ;a
i
) o ) (Zxx 

gi(1-ai) Zyx 

sn(~ 0) (Zxx 
g~ Z)'x 

Zxv) 
Zyy , 

Z,y) 
Zyy 

i = 1,2. (13.8) 

We studied various parameterizations of this equation, including those of Groom and 
Bailey (1989) and of Chave and Smith (1994). The classical distortion decomposition 
parameterization of Groom and Bailey (1989) was based on the Pauli matrices, and is 
a natural one for decomposition of a tensor with only elements on the diagonals or 
off-diagonals. When testing with the GB parameterization we found the algorithm to be 
highly sensitive to start model and to deviate rapidly to local minima. 

Of the forms that we tested, the parameterization that yielded the greatest stability 
was to solve for a new set of complex functions ai defined in the following way: 

ZD.i ZD.i 
. xx - rx ab = . 

2 

ZD,i +zD,i 
(Xi _ xx yx 
1- 2 

Z D.i ZD.i 
. xv v\' 

a~ =' .. 
2 

ZD,i +ZD,i a i _ xy yy 
3 - 2 i = 1,2. (13.9) 

In our new parameterization every ai depends only on two regional impedance elements 
instead of four as required by the classical GB one. Each ai is more sensitive to the 
parameters that form it, which accounts both for their sensitivity and for the stability. 

To solve this system of equations we used a Newton algorithm to find the minimum of 
the square of the norm between the estimated impedance and the measured impedance: 

(13.10) 

where aD are the data and am are the model parameters defined according to Equation 
(13.9), As we will see later, different tests performed on synthetic data were successful 
in retrieving the regional response together with the distortion parameters, 

The misfit that we use is a x-square misfit: 

I NAG: Numerical Algorithms Group, Fortran 77 mathematical libraries, version 17, The specific 
library use in this work is E04KDF, that is a modified Newton algorithm. 
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j =0, ... ,3, (13.11) 

where aiD are the data and am are the model responses, and Sam are the data variances. . } } 

4. SYNTHETIC TESTS 

We discuss below two tests using synthetic data that illustrate the reliability and 
limitations of our approach. We derived the theoretical responses at an MT station above 
a three-dimensional (3D) resistivity model, shown in Figure 2, using Randy Mackie's 
3D forward modelling code (Mackie et aI., 1994). The model consisted of a moderately 
conductive exposed medium (lOO Q m), a dipping resistive structure (2000 Q m) at 
depth, and a conductive (5 Q m) elongated structure that crosses the two media at an 
angle of 45°. The grid used was of 105 x 105 x 50 cells, with a minimum grid size in X 
and Y of 250 m and in Z of 90 m. Responses at a total of 11 frequencies were calculated 
from 10-3 to 102 Hz. The scaled impedances for the station located in the center of this 
model are shown in Figure 3. These synthetic responses were perturbed using two sets 
of distortion parameters (listed in Table 1), and Figure 4 shows the responses of the two 
stations obtained in this way. For both tests we assumed that the data had associated 
errors of 2% of their impedance amplitudes. 

Previous to any three-dimensional decomposition we proceeded to decompose both 
stations using a 2D algorithm (McNeice and Jones, 2001). As both stations have the 
same response with different galvanic distortion, we expect that the final 2D decomposed 
data should be the same, but different twist and shears. The results corresponding to 
the decomposition of both sites simultaneously are presented in Figure 5a for station 
1 and Figure 5b for station 2. The error in interpreting these data is clearly shown in 
these figures (left upper corner panel). Besides that the error misfit is too big to be 
considered a good fit, the regional responses (middle right panel) are totally different 
and the program could not retrieve the distortion parameters (bottom left panel). 

The results we present below consist of the decomposition of an impedance tensor 
at four frequencies, both with the gains fixed and with them free. Different tests were 
undertaken using different numbers of frequencies and different distortion models, and 
the results were essentially the same. 

Table 1. Distortion parameters used to obtain stations 1 and 2 used in the present work a 

Station I Station 2 

gl = g: 0.9 g3 = g~ 1.43 
g2 = gi 0.9 g4= gi 1.43 
tl -20° t2 _5° 
sI 35° s2 _17° 

a If the anisotropy is zero, then the gain factors in each station are equal. 
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Figure 2. Theoretical regional model used in this study. It consists of a lOO-Q m background with an embedded resistive structure dipping towards the X 
direction, and a conductive structure crossing the model at 45°. We calculate the responses of this model using Randy Mackie's 3D forward modelling code. 
The white box on the right indicates the extent of the conductor. The white dotted lines indicate the position of the slices. 
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Figure 4. Impedances scaled by the square of the period corresponding to the two stations obtained 
applying distortions parameters (Table 1) to the station from the 3D model. In gray there is station 1 
and the black responses are station 2. 
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4.1. Example 1: Gains fixed 

In this first test we held the gain parameters fixed to their actual values. Figure 6a shows 
the decrease of RMS misfit with successive iterations. For this case convergence was 
rapid and within 10 iterations a satisfactory solution was achieved with an RMS misfit 
of 0.6972. As an example of convergence of the parameters to their correct values we 
show the evolution of the shear and twist angles (Figure 6b) and the impedance elements 
Z x y and Zyx (both real and imaginary parts) at a frequency of 122.1 Hz (Figure 6c) 
as the iterations increased. The correct values are indicated in Figure 6b,c, and an 
excellent agreement between the determined parameters and the actual ones is apparent. 
We can conclude that if we know a priori the gain parameters, we can recover the other 
distortion parameters to within statistical accuracy. 

4.2. Example 2: All parameters free 

For the second example we demonstrate decomposition of the same data but with 
the gain parameters free in an attempt to recover them. For the initial tests the twist 
and shear angles at both sites were held fixed to their true values. The final solutions 
recovered the correct impedances and the gain parameters after six iterations. 

However, the real challenge is decomposition of the data with all parameters 
unconstrained. Figure 7a shows the evolution of the misfit function for successive 
iterations, with a final RMS misfit of 0.9265 after 10 iterations. The twist angles at 
both sites have been recovered after few iterations (Figure 7b) and the shear angles 
are close to their correct values (Figure 7b). However, the impedances (Figure 7d) and 
gains (Figure 7c) are significantly different from their correct values. Nevertheless the 
final decomposed model fits the data to within statistical tolerances (RMS misfit < 1.0), 
but the final parameters are far from the correct solution. Figure 8 shows the actual 
regional scaled impedances compared to those derived using the above final solution. 
As can be observed, the fit is better at high frequencies showing a constant shift at lower 
frequencies. As stated above in the Introduction, there is a strong equivalence problem 
that must be solved using additional geological and geophysical information, just as in 
the GB case for solving for the unknown site gain and anisotropy parameters. 

The main problem associated with this method is that the gain parameters appear 
to be virtually impossible to recover from the distorted impedances. Including the gain 
factors into the decomposition, as undertaken in the Groom-Bailey method, results 
in two differently scaled regional parameters, and the parameters to obtain will be 
16 x N + 4 instead of the prior 8 x N + 8, making the problem impossible to solve. 

To study this equivalence problem we undertook an analysis consisting of a series 
of realizations obtained by adding 1 % Gaussian noise and scatter to the impedance 
tensor elements of the two distorted stations. These individual realizations were each 
decomposed, and the results demonstrated that the problem is sensitive to small 
departures. A statistically satisfactory fit (RMS misfit < 1.0) can be achieved for each 
realization, but the 3D regional impedance parameters are not correctly recovered. As 
an example of the poor sensitivity of the individual parameters, we studied the variation 
of misfit as a function of two free parameters, the real part of the element Zyx of 
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Figure 5. Results from the 2D galvanic decomposition of the stations depicted in Figure 4. (a) Station 1. 
(b) Station 2. Both figures: A = RMS misfit of the decomposition; B = strike angle; C = impedance fit 
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Figure 6. Results corresponding to example 1. (a) RMS misfit. (b) Evolution of the twist and shear angles 
from an initial value of 0 to their actual values. (c) Evolution of the Zxy and Zyx element of the impedance 
tensor at a frequency of 1 Hz: continuous line, real part Zxy; dashed line, imaginary part Zxy; dotted 
line, real part Zyx; dotted-dashed line, imaginary part Zyx. As can be observed, with 10 iterations the 
correct model is reached. 

the regional impedance tensor (at 0.1 Hz) against the shear of the first site, as the 
other parameters are held constant. Figure 9a shows the variation of the RMS objective 
function (Equation 13.11) as the two free parameters are varied with all other parameters 
held at their correct values. As can be appreciated, the contoured minimum indicates the 
correct values for the two parameters (shown by the white cross). In Figure 9b we again 
contour the misfit against the two free parameters, but in this case the fixed parameters 
are held to the best-fit values found from our unconstrained procedure. As can be 
observed in this figure, the minimum is located far from the true solution (black cross), 
for a shear angle of 45°, but the RMS misfit is still statistically acceptable. Comparison 
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Figure 7. Results corresponding to example 2. (a) RMS misfit. (b) Evolution of the shear and twist angles: 
continuous line, twist site 1; dashed line, shear site 1; dotted line, twist site 2; dotted-dashed line, shear 
site 2. (c) Evolution of the gain parameters from an initial value of 1: continuous line, first gain factor 
site 1; dashed line, second gain factor site 1; dotted line, first gain factor site 2; dotted-dashed line, 
second gain factor site 2. (d) Evolution of the Zxy and ZyX impedance components at a frequency 1 
Hz: continuous line, real part Zxy; dashed line, imaginary part Zxy; dotted line, real part Zyx; dotted­
dashed line, imaginary part Zyx. 
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of Figure 9a and b also indicates that the regional impedances may be more stable and 
robustly determined than the distortion parameters. However, further work needs to be 
done to establish whether this is a generic feature, or only one resulting from our choice 
of impedance tensor and distortion parameters. 

5. DISCUSSION 

We have developed a 3D/3D decomposition approach for removing 3D galvanic 
distortion of a 3D regional response. For this purpose we use two adjacent stations and 
consider that both are sufficiently close to have the same regional 3D response but that 
they are affected differently by galvanic effects. The decomposition is undertaken in 
the frequency band where the inductive and magnetic galvanic effects due to the 3D 
scattering structure vanish. 

Using a decomposition scheme similar to that of Groom and Bailey (1989), but with 
a different parameterization, we can solve the problem. As in the Groom and Bailey 
case the problem becomes unstable when we try to solve for the site gains, although 
they can be recovered in our case under some circumstances. 

In this work we show that the 2D decomposition technique fails to retrieve the 
regional model from two three-dimensional sites affected by galvanic distortion. As a 
consequence, a 2D interpretation of these data would display erroneous features. 
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Figure 9. Analysis of the RMS misfit as a function of two parameters (real part of the impedance tensor 
Zyx at 0.1 Hz and the shear angle from station 1) fixing the rest. (a) The fixed parameters are equal 
to their actual values. (b) The fixed parameters have been obtained from the inversion of the data. The 
white area shows the RMS values between 3 and 4. The crosses indicate the location of the true minimum. 

The current work is focused on finding a more stable algorithm and a new parame­
terization of the decomposition equations that allow us to solve the total problem. The 
addition of the tipper vector to the problem is not advised, as this will add four more 
equations for each frequency to the problem, but at the same time it will add 4 x N + 2 
more unknowns: two complex regional tipper per frequency and two vertical magnetic 
field distortion parameters Q z to the number of unknowns. 
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