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In the magnetotelluric method, measurements of the components of the horizontal electric field are obtained by
recording the voltage between grounded electrodes and dividing by their separation distances. This procedure gives the
true value of the electric field only if it is uniform between the electrodes. In regions of near-surface inhomogeneity this
condition is not fulfilled, and in extreme cases each electrode may be in contact with surface material of different
resistivity. It is therefore suggested that voltages, rather than electric fields, should be computed in the two-dimensional
modelling of such regions in the B-polarization mode, and that magnetotelluric impedance calculations for comparison
with real data should be based on voltages. A method for modifying an existing finite difference program is described,
and sample calculations of voltage differences in the control model of Weaver, LeQuang and Fischer are checked
against the exact analytic results that can be obtained. Finally, real data obtained over the Gloucester Fault in Canada
are compared with results given by finite difference modelling based both on voltage calculations and on the more

conventional electric field calculations.

1. Introduction

In applications of the magnetotelluric method a
horizontal component of the electric field is mea-
sured by recording the voltage between two earthed
electrodes and dividing by their separation dis-
tance. In the schematic diagram Fig. 1a the elec-
tric field in the y-direction would be given by

E y = ’V'Zl/ d (1)
where ¥5, is the recorded voltage between elec-
trodes 2 and 1. The electric field measured in this
manner is then arbitrarily assigned to a particular

point in the range covered by the electrode pair.
Typically it is chosen to be at one of the electrode
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positions although the point midway between the
electrodes would seem to be preferable (see also
Section 3 and Table 1).

Actually the voltage between the two electrodes
is correctly defined by the line integral

2 Y2
1/21=f1E-ds=j;1Eydy (2)

which agrees with eqn. (1) only if E, is constant
between the electrodes. (Note that in general the
line integral (2) is path dependent, but for the
application considered in this paper the value of
¥, 1s always independent of the path of integra-
tion.) In regions with near-surface inhomogenei-
ties, such as shown in Fig. 1b, eqn. (1) will give
some average value for E,, while in the extreme
case shown in Fig. 1c, where the electrodes are
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TABLE I

Comparison of the true electric field in units of mV km™! nT~! with the analytic and numerical voltage electric fields in the
y-direction. The voltage fields were assigned to a point midway between the two points which provided the voltage used in each

calculation
y True analytic Voltage divided by
(km) separation distance
Real Imaginary Analytic Numerical
Real Imaginary Real Imaginary
—35.000 —0.3122 —0.2879
—32.000 —0.3142 —0.2873 —0.3143 —0.2873 —0.3143 —0.2884
—29.000 —0.3168 —0.2869
—26.000 —0.3204 —0.2870 —0.3206 -0.2871 —0.3206 —0.2883
—23.000 -0.3252 -0.2880
—20.000 -0.3317 -0.2906 —0.3321 —-0.2911 —0.3321 —0.2922
—17.000 —0.3406 —0.2962
—14.500 —0.3507 —0.3055 —0.3512 —0.3070 —0.3510 —0.3080
—12.000 —0.3641 -0.3244
-11.750 —0.3657 —0.3273 —0.2308 -0.2191 —0.2304 -0.2189
—10.000 —0.3786 —0.3658
—10.000 —0.0378 —0.0365
—8.500 —0.0495 —-0.0712
~6.750 —0.0608 —0.0866 —0.0604 —0.0853 —0.0601 —0.0877
—5.000 —0.0696 -0.0940
—2.500 —-0.0783 —0.0982 —0.0777 -0.0977 —-0.0772 —0.0990
0.000 —0.0834 —0.0990
2.500 —0.0854 -0.0982 —0.0849 —0.0980 —0.0843 —0.0992
5.000 —0.0846 —0.0961
6.750 —0.0825 —0.0933 —0.0823 —0.0929 —0.0817 —0.0942
8.500 -0.0789 —0.0879
10.000 —0.0745 —0.0752
10.000 —0.1491 —0.1505
11.750 —0.1440 —0.1368 —0.1164 —0.1163 -0.1156 —0.1175
12.000 —0.1434 —0.1358
14.500 -0.1385 —0.1304 —0.1387 -0.1309 —0.1380 —0.1315
17.000 —0.1352 —0.1283
20.000 —0.1326 —0.1275 —0.1327 -0.1276 -0.1321 —0.1286
23.000 -0.1309 —-0.1275
26.000 -0.1300 —-0.1278 —0.1300 —-0.1278 -0.1294 —0.1288
29.000 —-0.1294 —0.1281
32.000 -0.1291 —0.1284 —-0.1291 —-0.1284 -0.1285 —0.1294
35.000 —0.1289 —0.1286

Model parameters: a =10.0 km; d =50.0km; 7=3000s; 0;,=0.10Sm™}; 6,=1.00Sm™}; 6;=0.50Sm™ .

embedded in surface materials of different con-
ductivities o, and o,, E, is actually discontinuous
across the boundary between the two regions and
eqn. (1) could become quite inaccurate, as noted
previously by Fischer et al. (1983). Thus, in gen-
eral, the electric fields computed by numerical
modelling programs are not the same values as

those measured by voltages. In order to compare
model with experiment on an equal basis it is
therefore proposed that voltage divided by elec-
trode separation be used as the ‘electric field” in
model calculations when comparisons with real
data are made. For two-dimensional calculations,
only the B-polarization formulae will require mod-
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Fig. 1. Schematic diagram of the measurement of the voltage between two electrodes earthed (a) in a homogeneous region, (b) in a

region with a near-surface inhomogeneity, and (c) across a fault.

ification; by definition the electric field E_ in the
E-polarization mode is constant along any line in
the x-direction.

It is the purpose of this paper to show how an
existing two-dimensional finite difference program
can be amended so that voltages between nodes
rather than electric fields are calculated at each
node of the numerical grid in the B-polarization
model. In order to investigate how ‘electric field’
values obtained from voltages differ from those
calculated directly we have compared the two sets
of results with the synthetic control model ex-
amined previously by Weaver et al. (1985). Since
an analytic solution is available for this model, we
are also able to check the accuracy of the voltage
values given by the modified program. Finally, we
compare model calculations using voltages with
field results obtained over the Gloucester Fault in
Ontario, Canada, a structure known to resemble
the configuration shown in Fig. 1c.

2. Finite difference expressions for voltage

Since we wish to use ¥,; rather than the
electric field we need to calculate the voltage
between grid points on the surface of a two-di-
mensional numerical model. Consider a node, y =
Yu(m=2,..., M —1) as shown in Fig. 2. The no-
tation we use is the same as in Brewitt-Taylor and
Weaver (1976) (also Weaver et al., 1985) except

that the second subscripts on the parameters (indi-
cating the grid co-ordinate number in the z-direc-
tion) are omitted since we are working only on the
surface z=0. The y and z components of the
electric field are denoted by V(y, z) and W(y, z)
respectively, with time dependence exp(iwt)
understood, and at the surface nodes we write
V(y,+00)=V2 W(y,+00)=W,, the latter
being uniquely defined by continuity of the
tangential electric field. With p, denoting vacuum
permeability (assumed throughout the model) we
also define

1

Prmtrpp= T ————
mEl/ WOy, 11,2

3
R 1Pm—-12 + HpPi1 2 3)
h,_1+h,

Py =

On the boundary y =y, continuity of normal
current density requires

Vr;/pm—l/2= Vr:/pm+l/2 (4)
and continuity of 3W/dz (following from the

continuity of W) together with the fact that
div E =0 in each cell, gives

-3 (2 o
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Since E satisfies V?E = iwp,oE in a cell of con-
ductivity o, we have

avr\" vy (a%x)*
8y2 m Pn:/z 922 |

P12 Pm
— l( 12 +1/2 ) V,;
Pm—1,2
v\
Pm—1,2\ 0y~ ],
the last step following by successive application of

4).

The results (4) and (6) constitute boundary
conditions on the (discontinuous) fields V' and
02V /dy* at a surface node on the vertical
boundary between two cells of different conduc-
tivity. Boundary condition (5) shows that ¥ /dy
is continuous at such a node.

The finite difference program of Brewitt-Taylor
and Weaver (1976) is based on central difference
formulae which are obtained by expanding the
field up to second-order terms, and it is therefore
desirable to calculate voltages to the same accu-
racy. A Taylor expansion of V on either side of
the node y,, yields

v\t mi(av)”
- =yt - _m
nﬁl—Kn+hm(%Jm+ Z(aﬁ)m @)
v\~ hi_,{d*W\
+ — - _ - m -
I/m—l_V;n hm—l(ay )m + 2 (ayz " (8)

Adding eqn. (7) multiplied by #,,_; to eqn. (8)
multiplied by h,, and using boundary conditions
(5) and (6) we obtain, with the aid of (3)

07\ 28me [ U=t
(_)m B Pm(hm+hm-1)(

8y2 hm
Vr — Vr:—l
hm~1
1 -~ Pr
Ny 1Y'm 1-— +1/2) (9)
m m m—1 pm—l/Z

This is a generalization of the finite difference
formula for 32V /dy? at a conductivity boundary.
If p,+1,2 = Pm—1,2 = Pm> it Teduces to the familiar
central difference representation of the second
derivative. To find an expression for voltage be-
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Fig. 2. A surface node (m) in the numerical grid for finite
difference calculations.

tween the nodes y,,,; and y,, we now represent V'
in y,, <y <y,,,.1 by the Taylor expansion

V(y)=V;+(y—ym>(?,—’;)+
N (..L—ym)z(gz_V)+
2 8y2 "

and integrate over y from y,, to y,., according
to (2), to obtain

n3 27\t
Torn= a8+ V) =5 25) (a0
where (7) has been used to eliminate (3V/3y)}
from the final result.

Finally, the expression (9) can be substituted
for (8%V/dy?)}, in (10), and to avoid two separate
calculations of the electric field (one for the right-
hand side values V,; and one for the left-hand side
values V) everything can be expressed in terms
of right-hand side values through boundary condi-
tion (4). After some lengthy algebraic rearrange-
ment we arrive at the final result

TPy o
%n-kl m= 4+
' 6pm(hm+hm—l) hm
h ot — h, h, _
m \lp 1/2 + lhm m—1
L / Pm+1,2 2Pm+1/2

m

P T 2p,,
x(l— 1/2 ):|V++|: +1/2

Pm+1,2 Pris3y2
N 3y P2 |, BV
hm pm+3/2 mel hm—l

(11)



(m=2, ..., M—1), which is the desired finite
difference formula giving the voltage between two
adjacent nodes on the surface of the numerical
grid. A similar expression could be derived in
terms of left-hand side values if required.

It is worth noting that if the near-surface in-
homogeneities do not actually reach the surface
itself (as in Fig. 1b, for example), so that p,,_; ,, =
Pr+1/2= Pm+3,2 = Pm» then (11) reduces to the
much simplified form

v,

m+1,m

h
= —6ﬂ {(3 + rm)Vm - rmsme—l

+(3=5,)V,1}) (12)
where r,,=h,,/h,,_, and s, =r,, /(1 +r,).

3. Analytic control model

In order to investigate the accuracy of our
finite difference calculations of voltages we mod-
ified an existing B-polarization analytic solution
obtained by Weaver et al. (1985) for the control
model shown in Fig. 3. It is shown in the Appen-
dix how their solution can be integrated to give an
analytic expression for the voltage #7(y; 0) be-
tween any point y on the surface and the origin.
The voltage between the nodes y,,., and y,, can
then be calculated from the formula

Voni1m = ’V(ym+l; O) - V()’m; O)

The voltage solutions were programmed for
numerical calculation and the resulting ‘electric

air (O =0, lh=l4,)
y— y==g y=+a
r——— 20 ———»
z
0, g, % L

perfect conductor

Fig. 3. The control model used in the comparison of true
electric fields and those given by voltage divided by separation
distance.
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Fig. 4. Variation of the (a) real and (b) imaginary parts of the
horizontal component ¥ of the electric field across the surface
of the control model as given by direct analytic calculation
(solid line), by analytic computation of voltage values (broken
line), and by numerical computation of voltage values (dotted
line). Note that the accuracy of the numerical values is such
that the two voltage curves are barely distinguishable from
each other.
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field” values were obtained for the control model
shown. The model parameters used were T =
27/w=300s, a=10 km, d=50 km, ¢,=01 S
m'0,=10Sm ', 0,=05Sm™ "

In Fig. 4 and Table I the analytic values for the
true electric field and the corresponding analytic
and numerical values obtained from voltage calcu-
lations are compared. The excellent agreement
between the two fields given by voltage calcula-
tions illustrates the accuracy of our finite dif-
ference expressions for voltages. However, it is
clear that the voltage ‘electric field’ is only an
approximation to the true electric field. Away
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from conductivity boundaries the two methods of
calculation give the same results but on and near
the boundaries there is considerable error in
estimating electric fields by voltage calculations.
In the above comparison the ‘electric field’ was
assigned to the point midway between the two
electrodes measuring the voltage. It can be seen
from Table I that this results in a more accurate
representation of the field than if the electric field
value were assigned to one of the two electrode
positions. Unfortunately, this latter course of ac-
tion is followed in most experimental studies.

4. Field results from the Gloucester Fault

We now turn to actual field measurements
where a profile of electrodes is known to traverse
a fault: the Gloucester Fault in Ontario, Canada.
The field data shown in Fig. 5 illustrate dramati-
cally the large attenuation of the electric fields
obtained from voltage measurements between sites
only 50 m apart. Obviously, this is a case where
eqn. (1) will not be valid for the electrode pairs
straddling the fault or those nearby. The profile of
perpendicular electrode pairs is shown in Fig. 6;
the separation of the electrodes in each direction
is 50 m (except between electrodes 7 and 8, where
it is 40 m). The electric fields in each direction are
given by the measured voltage divided by 50 m,
and are assigned to the common electrode (nos.

magnetic
north
» ELECTRODE

8410182100-8410182200 250 N -55 80— 120

2500 2500
{a}

8410182100-8410182200 250 E 55 80— 120

01
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04

ﬁ?

09
OG/K’\A/\/\/V\/\/"\/\/\W—“W“‘———’\
P

07

og

2700 7200
{b)

Fig. 5. Electric field data from the Gloucester Fault, Ontario,
Canada: (a) parallel to the fault, (b) perpendicular to the fault.

1-8) in each perpendicular pair. Magnetic record-
ings were taken by EDA magnetometers at points
1 and 8; in addition, PHOENIX MT measure-

* 5 COMPONENT MAGNETOMETER

~55°

Fig. 6. Orientation and position of the electrode profile across the Gloucester Fault.
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Fig. 7. Notation used to transform the measured orthogonal horizontal components of electric field (U’, V') into components (U, V)

parallel and perpendicular to the strike.

ments were made at the centre of the squares
whose sides are formed by the perpendicular elec-
trode pairs meeting at positions 1 and 8. Since the
fields we want to study are the electric fields
perpendicular and parallel to the strike and not
those along the (x’, y’) axes defined by the
electrode pairs, we must first perform a transfor-
mation.

As shown in Fig. 7, the electrode stations are
labelled in ascending order along the x’-axis in the
direction of increasing x’. Thus the mth station
has co-ordinates (x_,, 0) in the primed co-ordinate
system and the transverse station at the mth point
has co-ordinates (x,,, d) where d=x, ,,— x,, is

m

the separation of the electrodes. Now the mth

station, (x,,, 0) has co-ordinates (x,,,, );,,) in the
unprimed co-ordinate system and the corre-
sponding transverse station at (x,,, d) has co-
ordinates (x,,,.1, Vam—3)- Note that this notation
holds only for strike angles a <w/4. On the
Gloucester Fault the electrodes were aligned with
a=35° The equations of transformation are
clearly

’ .

X' = —XCcosa+ysina

x=—x"cosa—y sina (13)
y'=—xsina—ycos «a

y=x"sina—y cos a
Likewise, the horizontal electric field components
on the surface z = 0 satisfy the same transforma-
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tion eqns. (13) which, for a B-polarization field
(i.e., U(y) =0), reduce to

U'(x’, y')=V(y)sin a
U(y)=0
Vi(x', y')y=—-¥(y)cosa

') cos a

(14)
Here U’, V' are the horizontal components of the
electric field in the electrode (primed) co-ordinate
system. The components U, V,. at station m are
measured in the field as

Un=7(xp21, 03 x,,,0)/d

V,=v(x,, d; x,,0)/d

where ¥(x;, ¥1; x5, ¥5) is the voltage measured
along the straight line between (x;, y;) and (x3,
¥y), and where the tilde denotes an electric field

given by voltage divided by separation distance.
By eqns. (1) and (2) we obtain

V(y)=U'(x", y')sina—V'(x’,

U’ = df U'(x’,0) dx
) (15)
V= al Vix, y) dy

We can transform the integrals (15) into the un-
primed co-ordinate system by using eqns. (13) and
(14), which give

1

Y2m+2

U, = al, V(y)dy
(16)
V)= l . 3V(y) dy
TABLE II

Now ys,42 =), +dsina and  y,,_3=y,, —
d cos a and by analogy with (13), we have
U,=—U,cos a—V, sina
V,=1U, sina— ¥V, cos a
which, combined with (16), give
~ s.u;_a Vam
= — V d
d '/)-zzm—dcos a (y) Y
COS & fymt+dsina
-— V(y)dy
Yom
cos Y (17)
~ o 2m
= vV d
d '/;JZm—dcosa (y) 7
Sin & [y, +d sin «
p fy 3 V(y)dy

It is interesting to note than even though we
started with a 2-dimensional B-polarization model
in which U =0, the use of voltages to calculate
electric fields has introduced a spurious electric
field U. This would disappear, of course, if the
electrode profile were aligned perpendicularly to
the fault (a = 7 /2).

The geology of the Gloucester Fault region is
shown in Fig. 8 (Telford et al., 1977) and an
idealized two-dimensional model for numerical
modelling is shown in Fig. 9. This model was used
in the finite difference program to obtain both the
true electric field and the ‘electric field” from
voltages for a period of 100 s. For a simple
comparison of the observed electric fields in Fig. 5
with these results, the field variations at each
station were filtered with a bandwidth 80-120 s

Comparison of the magnitudes of the electric field variations in mV km ™! given by the full range (trough to peak) amplitudes of their

sine wave representations

Station Experimental [ E | | True |E | | Voltage divided by Voltage divided by
separation distance | E | | separation distance | E |

1 68.7 68.7 68.7 031

2 58.2 69.3 69.1 0.31

3 44.4 69.9 69.8 0.38

4 29.0 70.8 52.2 25.7

5 9.76 1.82 22.1 141

62 15.1 2.19 2.05 0.17

7 3.48 2.36 228 0.08

8 3.10 2.43 2.27 0.14

# 15-20 s delay believed to be instrument problem.
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Fig. 8. Geology and electrical conductivities of the Gloucester Fault region. Conductivities are from Telford et al. (1977), except for
those in brackets which are assumed values based on the conductivities of similar rock types in the area. Depths are in metres.

(—3 dB points), and were then assumed to be
sinusoidal in time (period 100 s) with the peak
value occurring at time 21:20:10 and the adjac-
ent troughs at 21:19:15 and 21:21:00. In Table
I1, the full range amplitudes of the electric field
between trough and peak (i.e., twice the amplitude
of the sine wave) are listed for each station in
units of mV km ™! and are compared with the
corresponding values given by our true electric
field and voltage calculations. These latter values
were normalized by the measured values at Sta-
tion 1 (as far removed from the fault as possible)
before tabulation. Also shown are the values of
the component of electric field (similarly normal-
ized) parallel to the fault given by the voltage
calculation according to the first of eqns. (17).
These are not real fields; they are manifestations
of the inaccuracies in the method of measuring the
electric field, and, as expected, are very small
except for the electrode pairs that straddle the
fault.

It can be seen from Table II that neither the
calculated true electric field nor the voltage com-

putation are in close agreement with the measured
field values in the region of the fault. However,
the results given by voltage divided by separation
distance clearly represent a better approximation
to the observed behaviour of the measured electric
field than the computed values of the true electric
field, particularly at Station 4. The latter actually
increases slightly between Stations 3 and 4 whereas
the amplitude of the observed field shows a steep
decline from Stations 3 to 5. This decline is much
more faithfully reproduced by the voltage calcula-
tions. The spurious electric field parallel to the
fault shown in column 5 of Table II is surprisingly
large at Stations 4 and 5 (49 and 64% respectively
of the corresponding fields perpendicular to the
fault), thereby revealing another source of error
inherent in field measurements involving the mag-
netotelluric method. It is to be expected that an
E-polarization field will contribute in a similar
manner to the field measured by voltages per-
pendicular to the fault, but no attempt has been
made in this study to estimate the contribution
from an E-polarization field to the total amph-
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Fig. 9. Idealized model of the Gloucester Fault used in the numerical calculations.

tude of the perpendicular electric field in the
neighbourhood of the fault.

5. Conclusions

In the magnetotelluric method comparisons are
usually made between modelled and observed ap-
parent resistivities and phases, but these parame-
ters are, of course, affected by the electric field
values. The main purpose of this paper is to draw
attention to possible sources of error in the inter-
pretation of measured apparent resistivity and
phase values when comparing them with model
calculations in regions where the electrode profile
crosses a geological fault. In particular, it is re-
commended that model calculations use voltage

divided by separation distance to compute the
electric fields for comparison with real data.
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Appendix

For the conductivity model shown in Fig. 3,
with the inducing magnetic field along the x-axis



( B-polarization), Weaver et al. (1985) obtained the
solution for the y-component of the electric field
V, (where j=1, 2, 3 for the three regions of
conductivity o,, 0,, 03) in the form

V, — [ Visinh[(d—z)ayi]

B, «

j cosh( da jvﬁ—_

k, FE{(y) cos(k,,z) (A1)

1
a; 0

ﬁMs

where o} = wpo; and k,,=(2m+1)7/2d. The
Fourier series coefficients are given as

EP(y)=PP exp[(a= 1y1)7] (j=1.3)
EP(y) =LY exp[—(y +a)v?]

+LY exp[(y—a)yy (A2)
where for j=1, 3

(@3]
Py = BDL (2K exp(—2av?) - KL [1+BY

m

+(1-85) exp(—4ay,$,2))]}
1
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program, and it is not only algebraically simpler
than the one quoted in the previous paper but also
more convenient for programming. Let ¥ (y;; »,)
be the voltage between points ( y;, 0) and ()5, 0)
on the surface. Then according to (2)

V(—a;0)+fy Vidy (y<-—a)
Y
¥ (y;0) = j;Vzd)’ (-a<y<a)

Y@ 0)+ [Vidy (y>a)

Integrating the expressions (Al) and setting z =0
we obtain

7 (y; 0)
=¥ (Fa;0) — w(y+a)Vi tanh(dayi)
© v Koz %)
+— ¥ ~=[FP(y) - PY]
ol =)
; m=0 Ym

for |y|> a, with the upper sign and j =1 apply-
ing for y < —a and the lower sign and j=3 for
y>a.In —a<y<a we have

LY = —[(1+BY)KY ¥ (y; 0) = — wyVi tanh(da,Vi)
m Dm m m o
i) k
= + 2 Zm o pO) ex —a)vy®
— (1 — B;J))K'(n]) exp(_za,},’(’?_))] (X% mg() 'Y,Elz) { m p[(y )Ym
1 2_ 42 D (3)
KU = 2lk'”(a2 af) KUl = I(’" ,(’" LE:I) 3*?‘[_(‘3"‘ _a)'Yr'Ef_]") }*—
m 3\2 m )
(D7) K
@y DR
BY) = == = BY) B B m References
/s 8y

and where we have defined
D,=(1+B81)(1+8Y)
- (1= B)(1 - B27) exp(—4av.?)

v = K2+ ia?

Note that F2(y) as given by (A2) is slightly
different from (but equivalent to) the form quoted
by Weaver et al. (1985). As a matter of fact (A2)
was the expression they actually used in their
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