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INTRODUCTION 

SUMMARY 
We present an exact and analytical expression for the Fourier transform of a function that has 
been sampled logarithmically. The procedure is significantly more efficient computationally 
than the fast Fourier transformation (FFT) for transforming functions or measured responses 
which decay slowly with increasing abscissa value. We illustrate the proposed method with an 
example from electromagnetic geophysics, where the scaling is often such that our logarithmic 
Fourier transform (LFT) should be applied. For the example chosen, we are able to obtain 
results that agree with those from an FFT to within 0.5 per cent in a time that is a factor of 
102 shorter. Potential applications of our LFT in geophysics include conversion of wide-band 
electromagnetic frequency responses to transient responses, glacial loading and unloading, 
aquifer recharge problems, normal mode and earth tide studies in seismology, and impulsive 
shock wave modelling. 
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In many scientific problems it is necessary to compute the Fourier transform (FT) of a function or measured response that rises 
quickly then decays slowly with increasing abscissa (independent parameter) value (an 'inverse ramp'). In such cases, it is 
desirable to derive the function, or sample the response, with a small abscissa interval during the rise, but then increase the 
interval with increasing abscissa value. Various approximate techniques have previously been presented to accomplish 
effectively the required FT of a function or response that is sampled in such a manner. These include fitting the response with a 
set of functions for which the analytical FTs are known (Lee & Lewis 1974; Lamontagne 1975, see Holladay 1981), discrete 
Fourier transform (DFT) of a suitably interpolated response (Dey & Morrison 1973; Palacky & West 1973; Hostetter 1982), 
decomposition of a polynomial approximation of the response into partial fractions (Chen & Haas 1968), and FTs of segments 
of the response (Asten & Verma 1978). 

If the function can be adequately described by uniform sampling in the logarithmic parameter domain, then the cosine and 
sine transforms can be written as Hankel transforms, and a fast Hankel transform (FHT) convolution filtering technique 
(Anderson 1979; Johansen & S0rensen 1979; Nissen & Enmark, 1986) can be employed. The FHT method has, in general, 
effectively superseded the previously mentioned schemes for geophysical problems since its advent as a special case in the 
excellent article on FHT by Johansen & S0rensen (1979). 

The approach we present here also is applicable to functions and responses that are adequately represented by a 
logarithmic sampling scheme. The theoretical development is similar to that of Talman (1978) with the differences that we treat 
the Fourier integral directly, not sine and cosine integrals independently, and we introduce a trade-off parameter which must 
lie in the range max (It, 0) to min (/3, 1), where It and /3 are defined by the decay characteristics of the response that is to be 
transformed, whereas Talman (1978) considers the restrictive case of this parameter being set to !. Our approach leads to an 
exact, analytical expression for the logarithmic Fourier transform (LFT), or inverse logarithmic Fourier transform (ILFT) of 
that function. Because of the restriction in treating the logarithm of zero, the ILFT is only valid for functions that have zero 
amplitude at zero frequency (or wave number), and the LFT for functions that are zero at zero time (or space). 

We will give the theoretical development, and then show an example of the application of the method for deriving the 
vertical magnetic field that would be observed over a line-current buried in a half-space of non-zero conductivity. 
Consideration will be given to the necessary sampling of the function, and to the effect of varying the trade-off parameter. 

The main application that we are aware of for our LFT is in the field of electromagnetism, and is in particular the 
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conversion of wide-band electromagnetic frequency responses to transient responses. Much effort has been expended in this 
area over the last 20 years, as is evidenced by the publications cited above. There are possible applications in other branches of 
geophysics, which might include glacial loading and unloading and the associated rebounding of the lithosphere, acquifer 
recharge problems, normal mode and earth tide studies in seismology, and impulsive shock-wave modelling. 

THEORY 

We define the Fourier transform pair [f(t), F(v)] as 

F(v) = F{f(t)} = fJ{t) exp (-ivt) dt (la) 

1 foo f(t) = F-l{F(v)} = - F(v) exp (ivt) dv 
2:n: _00 

(lb) 

where F and F- 1 represent forward and inverse Fourier transformations respectively. 
The complex function F(v), -00 < v < 00, is assumed to be defined for real frequency or wave number v, and we wish to 

transform from the v-domain to the logarithmic w-domain using 

{
-vo exp w, for v < 0 

v-
- voexpw, forv>O. 

The factor Vo is introduced for dimensional consistency, and for simplicity is assumed to take the value of unity. 
The function F(v) thus transforms to two complex functions: 

{
F(-VoeXpw) = G1(w) forv<O 

F(v) = 
F(voexp w)= Gz(w) forv>O. 

The transformation F ~ G is obviously not possible for v = 0, and thus F( v) must be zero at v = o. 
Similarly, we transform the real time variable t to T by 

t = { -to exp T, for t < 0 
toexp T, for t > 0 

(2) 

where to is also introduced for dimensional consistency, and the complex function f(t) transforms to two complex functions: 

{
f( -to exp T) = gl(T) for t <0 

f(t) = f(to exp T) = gz( T) for t > O. 
(3) 

We wish to determine the transform in the w-domain that is equivalent to the 1FT of F(v). Substituting transformations 
(2) into (lb) gives 

1 foo 1 foo f(t) =- GJ(w) exp [w - (itexp w)] dw +- Gz(W) exp [w + (itexp w)] dw. 
2:n: -00 2:n: _00 

(4) 

Substituting transformations (3) into the above yields for t < 0 

1 foo 1 foo gl(T) = - Gj(w) exp [w + i exp (w + T)] dw + - GzCw) exp [w - i exp (w + T)] dw 
2:n: _00 2:n: -00 

(5a) 

and for t>O 

1 foo 1 Joo gz(T) =- Gj(w) exp [w - i exp (w + T)] dw +- Gz(w) exp [w + i exp (w + T)] dw. 
2:n: _00 2:n: -00 

(5b) 

Accordingly, we need to solve integrals of the form 

foo G(w) exp [w ± i exp (w + T)] dw. 

For an arbitrary real parameter k (a 'trade-off' parameter), the integral may be rewritten as 

foo G(w) exp [w ± i exp (w + T)] dw = exp (-kT) f"G(w) exp [k(w + T) ± i exp (w + T)] X exp [(1- k)w] dw. (6) 

Equation (6) now appears as a convolution type integral, which we solve formally by the usual method of FT, 
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multiplication, then 1FT, such that 

f~ G(w) exp [w ± i exp (w + r)] dw = exp (-kT)p- 1{f= f= G(w) exp [k(w + r) ± i exp(w + r)] x exp[(1- k)w - isr] dwdr} 

= exp (-kT)p-1{f= G(w) exp [(1- k)w + isw] dw f= exp (kx ± i expx) x exp (-isx) dx}, 
(7) 

where x = w + r, and s is an intermediate variable of the inverse transform. 
The first integral on the rhs is 

f= G(w) exp [(1- k)w - isw] dw = 2np-l{G(w) exp [(1- k)w]) 

which converges whenever ex<l-k<[3, where ex and [3 are real and such that IG(w)I~Aexp(-exw) as w~-oo and 
IG(w)1 ~ B exp (-[3w) as w~ +00. The second integral converges for 0 < 1 - k < 1: 

f~ exp (kx ± i exp x) x exp (-isx) dx = f>-l-is exp (±iy) dy = exp [ ± ~ (s + ik) ]r(k - is) 

(Erdelyi 1953, §1.5, equations 32 (note typographical error), 33; Gradshteyn & Ryzhik 1980, 3.381.5). Thus, whenever 
max (ex, 0) < 1- k < min ([3,1), 

f= G(w) exp [w ± i exp (w + r)] dw = 2n exp (_kT)P- 1
{ exp [ ±g (s + ik) ]r(k - is)p-l{G(W) exp [(1- k)w])}. (8) 

Note that it is equally possible to derive the convolution by 1FT, multiplication, then FT such that 

f" G(w) exp [w ± i exp (w + r)] dw = 2~ exp (-kT)p{ exp [ ± g (-s + ik) ]r(k + IS)P{G(w) exp [(1- k)W])}. 

Substituting (8) into (5b) gives for gz(r) 

g2(r) = exp (-kT)P- 1
{ r(k - is)( exp [ - g (s + ik)] 

x p-l{ G1(w) exp [(1- k)w]) + exp [~(s + ik) ]P- 1{G2(W) exp [(1- k)w]) )} (9) 

and the same for gl(r), but with a sign change in the exponential arguments (n/2)(s + ik). 
Prom comparison with our definitions of the FT and the 1FT (equation 1), we call J(t) derived by this procedure the 

inverse logarithmic Pourier transform (ILFT) of F(v), and write it as J(t) = L -l{F(v)}. The logarithmic Pourier transform 
(LFT) can be constructed in exactly the same manner, where 

G2(w) = 2n exp (-kW)P- 1{ r(k - is)( exp [~(S + ik)] 

x P- 1{gl(r) exp [(1- k)r]) + exp [ - ~ (s + ik) ]P- 1{g2(r) exp [(1- k)r]})} (10) 

and the same for G1(w) except for the appropriate sign changes in the exponent term (n/2)(s + ik). Note that for such a 
transformation to be realizable, J(t) must be zero at t = O. 

The choice of k is somewhat arbitrary, within the bounds set by ex and [3, and some numerical considerations are discussed 
below, but we note that for Is I large then 

Ir(k - is)1 ~ (2n)1f2lslk- 1I2 exp ( _ n ~Sl) 

(Copson 1935, §9.55), and so 

I [n .] . I {(2n)1I2Is/k-1I2exp(-nlsJ) 
exp -(s+lk) r(k-IS) - ( 112 k-1I2 

2 2n) Isl 
as s~-oo 

as s~ +00 

and 

as s~-oo 

as s~ +00 
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and so the smaller the value of k, the more rapid the convergence of the above term with large s. However, at small values of 
k, the slower is its convergence at small s, the gamma function being singular at k = s = 0. Also, the smaller the value of k, the 
less rapid is the convergence of F-J{G(w) exp [(1- k)w]). 

NUMERICAL CONSIDERA nONS 

In a numerical problem, the inverse Fourier transforms are approximated by a discrete transform over a finite interval. If we 
sample G(w) at N equidistant points within the bandwidth Wmin < W < Wmax , then the inverse Fourier transform of G(w) is 

1 Joo /(s) =- G(w) exp (isw) dw 
2n _00 

1 NJ2-J 

=- L G(wn) exp (iswn)Llw 
2n n~-N/2 
Llw NI2-J 

=-exp (isw) L G(wn) exp (isnLlw) 
2n n~-NI2 

where Llw = (wmax - wmin)/N, W = (w max + wmin)/2, and Wn = W + nLlw, the number of sampling points N assumed to be 
even. The first sample is at wmin ' and the last at wmax - Llw. 

As a result of the sampling, the range of s is now restricted to - n / Llw :=; s < n / Llw. In discrete Fourier analysis, the 
transform is computed at the same number of sampling points N, equi-spaced over the bandwidth in s, so that 

w - w - {I NI2-J } 
f(sj)= max mlnexp(isjw)- L G(wn)exp(i2njn/N) , 

2n N n~-NI2 

where Sj = 2nj I (wmax - Wmin), j = - N /2, - N 12 + 1, - N /2 + 2, ... , N /2 - 1. The term in braces is the discrete 1/ N -scaled 
inverse Fourier transform computed by conventional FFf routines (for example FFf by Singleton, 1979; SSP routine HARM). 
The (wmax - wm in)/2n is a factor that this particular discrete transform must be multiplied by in order to approximate the 
inverse transform defined by equation (lb). The exp (isjw) results from the w shift in the w-domain. 

After multiplying the above function by exp [±(n/2)(sj + ik)]r(k - isj), the inverse transform is again approximated by a 
discrete inverse, the multiplying factor this time being (smax - smin)/2n = N I( wmax - wmin). Thus, the two multiplying factors 
together give N /2n, and the frequency shift of W in the w-domain results in a phase shift of the same amount, but of opposite 
sign, in the T-domain. Table 1 gives the sampling in the various domains; in order to describe the procedure we introduce two 
more domains, w' and T', which are related to their respective domains by a shift along their abscissae, which introduces a 
phase factor of exp (-isw) in the s-domain. 

The gamma function r(k - is) is efficiently derived by calculating r(1 + k - is), I being a positive integer, using the 
asymptotic expansion formula which contains a summation involving Bernoulli's numbers (Abramov 1960, p. 3; Abramowitz & 
Stegun 1970, 6.1.40), then invoking the recurrence relation for gamma functions r(1 + k -1- is) = r(1 + k - is)/(I + k -1- is) 
(Abramowitz & Stegun 1970, 6.1.15). (A value for I greater than four ensures that the gamma function is derived to seven 
significant figures when only the first three Bernoulli numbers are used. See also Abramov 1960, p. 5). 

Table 1. Sampling and end points in the various domains 

Domain Relation Minimum Maximum Mid-point Sample interval 

v Vmin Vmax logarithmic 

W log (v) wmin wmax 
iiJ = (Omin + lOmax (Omax - wmio 

2 N 

w' w-w (J)max - Wmin {J)max - Wmin 
0 4w 

2 2 

F- 1{[w']} 
-nN nN 

0 
2n 

s 
wmax - wmin Wmax - wmin wmax - Wmin 

r' F-l{[S ]} -n n 
0 ~(=4W) 

4s 4S 2smax 

r r' + r -wmax -Wmin -w 4w 

eT logarithmic 
vrnax vmin 
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AN EXAMPLE OF THE METHOD 

The example chosen to illustrate the above described method for LIT is taken from Jones (1986). The vertical magnetic field 
HAy, f) observed on the surface of the Earth, of conductivity a, due to a line-current flowing in the x-direction at depth d 
within the Earth is given by 

HAy, f) = ~ Ft,(1'/ i: Ivl) exp (-1'/d)}, (11) 

where 1'/ = (v2 + i2JrJI'a)1/2, v is the wavenumber, I' is the permeability of the Earth, and I is the current flowing in the line at 
frequency J. It can be shown that Cl' = -1, fJ = 00, and thus k can be chosen in the range 0 < k < 1. The kernel of the FT is 
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Figure 1. The procedure to compute the ILFf. (a) F(v) for v>O; (b) G2(w)(=-Gt (w) in this example); (c) eW12[b]; (d) F-I{[C]}; 
(e) e"l2(s+1I2)r(!_is) Id]; (f) F-1{[e]}; (g) g2(t")=e-<12If]; (h)f(t), for t>O. The heavy lines are the real parts, and the light lines are the 
imaginary parts. 
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antisymmetric about v = 0, i.e. Gl(w) = -G2(w), and thus the LFT reduces to 

g2( r) = 2n exp (-kT)F- 1
{ r(k - is)( - exp [~(s + ik)] + exp [ - ~ (s + ik) ])F-l{ G2(w) exp [(1- k)W])} 

= -4n exp (-kT)F- l
{ r(k - is) sinh (~(s + ik) )F-l{ GzCw) exp [(1- k)W])}. 

The sequence of operations required to perform the ILFT is illustrated in Fig. l(a)-(h). 
For a line-current excited at 1 Hz at a depth of 1 km in an earth of conductivity 0.001 S m-\ and free-space permeability, 

the kernel F(y) of the Fourier transform in (11) is as shown in Fig. l(a). Fig. l(b) illustrates G2(w)(=KHz (exp w)), and the 
bandwidth, given by w B = w max - W min ' is chosen to be 10. Thus .1s = 2n/wB = 0.628318, and for N = 64 then Smax = 
nNlwB = 20.106 (see Table 1). For this example we choose k = 1, and Fig. l(c) illustrates G2(w) exp (wI2). The 1FT of this 
function is illustrated in Fig. l(d), and for the function under consideration there is obviously little 'high-frequency' content in 
that the contributions for Isl > n are smaller than 1 per cent of the maximum value. Thus, the gamma and exponential 
functions need only be computed out to this value if speed is of the essence. The multiplication of this function with the gamma 
and exponential functions for k = 1 is illustrated in Fig. l(e), and the 1FT of this in Fig. l(f). The function g2(r), given by 
exp (r/2) times the function shown in Fig. l(f), is illustrated in Fig. l(g), and finally the conversion to J(t) is in Fig. l(h). 

The numerical result is dependent on the choice of k and N, with the dependence on k decreasing with increasing N. For 
k = 0.1, 0.5, 0.9 and N = 64, the ILFT gives the results for Re {gz( r)} as shown in Fig. 2(a). Keeping k constant at 0.5, and 
varying N from 64,128,256,512 gives ILFTs as shown in Fig. 2(b). At this larger value of N, the variation with varying values 
of k is less than 1 per cent. It must be noted that for k = 0.9 and N = 64, the result at small distances was unphysical in that the 
derived imaginary part was positive. 

In Fig. 3 is illustrated a comparison of the ILFT, for N = 512, with an FFT result derived by Jones (1986) using a 
16384-point FFT. Also shown in the figure is the result of a 65536-point FFT in order to obtain estimates at short distances. 
Note that the 16 384-point FFT 'clipped' the peak of the response, whereas the ILFT and the 65 536-point FFT values agree to 
better than 0.5 per cent. 

CONCLUSIONS 

We have described how the Fourier transform integral may be performed if the sampling of the parameter is logarithmic. The 
theory presented is exact and analytical, not approximate as were some previously suggested methods. It is important to realize 
that only certain functions or responses can be transformed both ways. These functions must have zero contribution at zero in 
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Figure 3. Comparison of 16384 and 65536 point conventional FFfs to a 512 point LFf. Note that the 16384 point FFf has 'clipped' the top of 
the response (insert). 

both domains, e.g., odd functions. The 'trade-off' parameter k must lie within bounds set by max ((1', 0) < 1 - k < min ({3, 1), 
and thus the appropriate (1' and {3 values must be determined. In Talman's (1978) approach, this factor was chosen to be !, 
however there can exist functions for which (1' >! or {3 < !. 

If the LFT can be applied, then obviously the saving in computational cost is enormous. By the 'traditional' FFT method, 
assuming there are m operations required to derive the kernel function at one frequency, for N* points there are mN* 
operations to derive the kernel function, and N* log2 (N*) to perform the FFT. By the LFT method, for N points, the kernel 
function need only be derived mN times, effecting an immediate saving of a factor of N* / N. Also, the two IFFTs only require 
N log2 (N) operations. The other operations are a function of N, and these can be reduced if the gamma and exponential 
functions are only derived for necessary s values or if they are kept in a look-up table. For the example given here, we can 
satisfactorily replace a 65536-point FFT, requiring over 1 million operations for the FFT alone, by an ILFT requiring of the 
order of 5000 in total, effecting a speed increase of over two orders of magnitude. 

Numerical implementation of the LFT requires due care in the choices of the k and N values for a given problem. In our 
example, for k = 0.9 and N = 64 we derived an un physical imaginary part of the response at short distances, although the real 
part was closer to that given by the conventional FFT. As N increased, the results for varying k converged. 
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