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Abstract. The magneto telluric analytical solutions for 
an earth containing transitional layers in which the 
electrical conductivity is a function of depth has been 
considered previously for certain types of restricted 
models. However, an analytical formulation for an arbi­
trary n-Iayered earth containing both constant conduc­
tivity layers and transitional layers has not been pub­
lished. Herein is presented a general matrix technique 
for such a problem in which the solution matrix is built 
up from n -1 layer connection matrices. The solution 
matrix is extremely sparse for n large and can be solved 
by O(n) operations rather than the usual 0(n 3 ). 

This theory is applied to generate the theoretical 
surface response two specific models of the litho­
sphere and asthenosphere. The first model has a litho­
sphere/asthenosphere boundary at 80 km and is repre­
sentative of "young" oceanic crust and upper mantle. 
The other model is representative of a continental crust 
and upper mantle structure with an asthenosphere be­
low 160 km depth. 

For both models, techniques of linear inverse theory 
are applied to ascertain if a transitional zone between 
the lithosphere and asthenosphere could be resolved by 
surface measurements. It is shown that the impedance 
phase data is far more important for resolving this 
model parameter than is the apparent resistivity data. 
Accordingly, the need for more precise phase infor­
mation is stressed. 

Key words: ELAS project - Electrical lithosphere/as­
thenosphere structure - Magnetotelluric method - Bal­
tic shield. 

Introduction 

The identification of an "electrical asthenosphere", or 
ELAS layer, beneath the oceanic and continental li­
thospheres is the subject of intense enquiry at present 
within the electromagnetic induction community. [The 
activities of the EL AS ad hoc committee of Working 
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Group 1/3 of IAGA (International Association of 
Geomagnetism and Aeronomy) are reported in the 
IAGA news pUblications (Vanyan, 1980; Schmucker, 
1981; Schmucker, 1982).J By far the most considerable 
success has been achieved by ocean-bottom experi­
ments that have detailed zones of high conductivity 
beneath both the Atlantic and Pacific oceanic litho­
spheres (Cox et el., 1980; Filloux, 1980a, b, 1981; 
Oldenburg, 1981; Chave et aI., 1981). There is strong 
evidence in these data that the depth to these ELAS 
zones increases with increasing age of overlying oceanic 
crust. 

On the continental lithosphere, Jones (1980, 1982a, 
b, 1984) and Jones et al. (1983) have presented models 
for various regions of northern Scandinavia that de­
mand conducting zones beginning at depths in the 
range 110-200 km. Such zones, of increased conduc­
tivity, are also interpreted to begin at a depth of 70 km 
beneath the Kola peninsular (Kransnobaeva et aI., 
1981), at 50-80km beneath the Pannonian basin 
(A.dam et aI., 1982), at 100km beneath the Grenville 
Province of the Canadian shield (Kurtz, 1982) and at 
170 km beneath Tucson, Arizona (Larsen, 1977). 

The majority of the above authors interpreted their 
estimated response functions in terms of one-dimen­
sional (1 D) layered-earth models (an example of such a 
model is illustrated in Fig. 1 a). Many presented not 
only the "best-fitting" (defined in some manner) mod­
els, but also the range of possible models permitted by 
the statistical errors associated with the estimates. 
Whereas constant conductivity layered-earth models 
are perfectly satisfactory and justifiable for describing 
certain geological situations, e.g. sedimentary basins, it 
is to be expected that there exists a transition zone of 
finite width between the low electrical conductivity of 
the base of the lithosphere and the high conductivity of 
the ELAS zone. Hence, the question arises as to wheth­
er the parameterization of the earth's upper mantle into 
discrete layers is a satisfactory and adequate represen­
tation of the lithosphere/asthenosphere boundary. 

Oldenburg (1981) and Kurtz (1982) have presented 
inversions of response functions in terms of models in 
which the conductivity varies continuously with depth 
lan example of this class of models is illustrated in 
Fig. 1 b). These models can be thought of as the other 
alternative, in that the transition zone may be overem­
phasized and have too great a width. 

In order to compromise between these two extremes 
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Fig. I. Three classes of I110dds of the earth which are accept­
able to the Kiruna response (see Fig. 8). a Three-layered mod­
el with constant conductivit.y in each layer. b C2 + model with 
a continuous variation of conductivity with depth. c Four­
layered model with a transition zone between the lower li­
thosphere and the asthenosphere 

of model parameterization, we consider the case where 
there exists a transition zone, in which the conductivity 
varies linearly with depth, between two layers of con­
stant conductivity (Fig. I c illustrates an example of 
such a model). Kao (1981, 1982) and Kao and Rankin 
(1980) have considered this class of models and have 
presented the analytical formulation for the restricted 
case of a maximum of three layers, of which one may 
be a transition zone. They show that the electromag­
netic fields within the transition zone layer may be 
expressed in terms of Airy functions of the first and 
second kinds. We have generalized their approach by 
considering an II-Iayer problem in which any or all of 
the layers can have a conductivity that varies linearly 
with depth. By matching the appropriate boundary 
conditions at the interfaces between the layers, of which 
four possible cases exist, we build up a complex sparse 
solution matrix. This solution matrix is then inverted to 
yield the complex impedance observed on the surface. 
The theory for this approach is presented in the follow­
ing section. 

To ascertain which of the parameters of a given 
model are resolvable, certain aspects of linearized in­
version theory can be applied. Herein, the system ma­
trix relating infinitesimally small variations of the mod­
el parameters to the resulting variations produced in 
the observed surface impedance is factored using a sin­
gular value decomposition (SVD). The SVD of the sys­
tem matrix A, which relates infinitesimally small order 
changes in the model parameters (Ll p) to the changes 
thereby introduced in the response functions (Ll c), by 
Llc=ALlp, factorizes A into three matrices A=UAVT . 

These three are known as the matrix of singular values 
(A), the data eigenvector matrix (U) and the parameter 
eigenvector matrix (V). Such a factoring orders the 
model parameters, or combinations of model param­
eters, into one of three classes: either importClllt, /J/(/l" ­

ginall y important, or unimportant. The theory for this 
technique will not be presented as it is now a standard 
tool. [The reader is referred to, for example, Wiggins 
(1972), Lawsol1 and Hanson (1974), Edwards et al. 
(1981), .Iones (1982a) and llkisik and .lones (1984).J 
Also, the model parameter intercorrelations are com­
puted and discussed (Lawson and Hanson, 1974; 1n­
man, 1975). 

In this work, we apply the theory presented in the 
following section, and the above-mentioned linearized 
inverse theory, to two specific models of a transition 
zone between the lower lithosphere and the upper as­
thenosphere. The first model is representative of a 
"young" oceanic environment, in which the depth to 
the ELAS layer is of the order of 80 km. The theoreti­
cally observed responses for such a model are calculat­
ed for the period range of observation of a typical 
natural source sea-floor electromagnetic experiment 
(0.1-10cph), and standard errors are assigned to the 
responses. The second model is representative of the 
north-western part of the Baltic shield with an ELAS 
layer beginning at a depth of some 160 km. Variations 
in the possible thickness of a transition zone are con­
sidered by comparing the appropriate theoretical re­
sponse function to actual field data. 

For both of these studies, the importance of reliable 
phase estimates, with small associated standard errors, 
is shown. Although for a model in which the con­
ductivity varies with depth alone the theoretically ob­
served magnetotelluric (MT) apparent resistivity is re­
lated to the phase of the impedance by the Hilbert 
transform (see, for exam pie, Weidelt, 1972; Fischer and 
Schnegg, 1980; .Iones, 1980), in practice the variations 
in the gradient of the apparent resistivity are too subtle, 
given the errors in the data. Also, it is often the case 
that although the apparent resistivity data are well 
estimated, i.e. have small standard errors, the phase 
data are not so well estimated. This may be due to 
either timing problems (see, for example, lones et aI., 
1983) or to inadequate techniques of statistical fre­
quency analysis being applied to the data. Hence, the 
structure of the error at a particular frequency is not a 
circle in the complex impedance plane (Fig. 2a), but is 
more like the kidney shape of Fig. 2 b. Accordingly, the 
aim of this paper is to emphasize the requirement for a 
grea ter effort to be expended in the more precise esti­
mation of impedance phase. 

Im( z) Im( z) 

Fig. 2. Two types or error structure for an estimated 
impedance: u the error in apparent resistivity and 
impedance phase are of equal equivalent magnitude; /J 

(</> 	 there is greater error in the impedance phast: than in 
the apparent resistivity 

Re ( z) 	 Re ( z ) 
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Theory 

Consider an n-Iayered earth in which one (or more) of 
the layers is vertically inhomogeneous, such that its 
conductivity varies linearly with depth (as illustrated in 
Fig. 3). In any layer, for a time-harmonic plane wave 
source, the horizontal electric field within the layer 
obeys the well-known diffusion equation (dependence of 
the electromagnetic fields on frequency is assumed 
throughout) 

d2 

dz 2 Ex(z) ­ iw /lO"(z) EJz) = 0 (1 ) 

where W is the angular frequency of the incident source, 
/l is the magnetic permeability of the medium, and O"(z) 
is its conductivity as a function of depth z. 

For layers of constant conductivity, i.e. O"(z) = O"j for 
Zj_l;£Z~£Zj' the solution to equation (1) is simply 

Ex(z) = A j exp( -kj(z -Zj_ 1)) + Bj exp(kiz - Zj_l)) (2a) 

where Zj _ 1 is the depth to the bottom of the U-1 )'th 

layer (i.e. the top ofthej'th layer), kj=Viw/ljO"j, and Aj 
and B j are the layer constants. The magnetic field with­
in this layer can be determined by application of the 
relation dEx(z)!dz= -iw/ljHy(z) to yield 

k. 
Hy(z)=-._J_ [Aj exp( -kiz -Zj_l))

lW/lj 
-Bjexp(k/z -Zj_l))]. (2b) 

For a layer in which the conductivity varies linearly 
with depth, the conductivity function at depth z, O"(z) is 
given by 

O"(z) = O"j +a/z - zj_ 1) (3) 

with the conductivity gradient defined as 

O"b _ O"t 
a.=_J__J 

J h j 

where O"j and O"~ denote the conductivities at the top 
and bottom of the j'th layer respectively, and hj is the 
layer's thickness, hence hj=Zj-Zj_l' It can be shown 
(Kao 1981, 1982; Kao and Rankin, 1980) that the hori­
zontal electric field within this layer obeys the Airy 
differential equation 

d2 

-d2 EJz) -'1jEx(z) =0 (4)
'1j 

where 

'1j= /3 j[O"j+ a/z -Zj_l)] (5) 

with 

(i W /l.)1 /3/3 - __J 
j - a 2 

J 

and the root with phase of n/6 being chosen for /3j. 
(This assures that the Airy function Ai decays to zero 
at infinite depth.) 

CONDUCTIVITY,CT (Sm-I) 

I 

ti: 
w 
Cl 

Fig.3. A parameterization of a layer that has a linear gra­
dient in conductivity with depth 

CASE CC 
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I 
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~fT~Zj+1 O"j+1 Zj+1 

Fig. 4. The four possible layer interface cases. C denotes a 
layer in which the conductivity is a constant; T denotes one 
with a gradient in conductivity. In each case, the first letter 
denotes the upper layer 

The solution to Eq. (4) can be expressed in terms of 
Airy functions of the first and second kinds (Abra­
mowitz and Stegun, 1970), viz. 

(6a) 

where Ai and Bi are the Airy functions. As before, the 
magnetic field is given by the derivative of Ex(z) with 
respect to z, divided by -iw/lj , viz. 

H ,(z) = .-'1j [A .Ai'('1') +B .Bi'('1.)] (6b)y lW/l j J J J J 

where the prime denotes differentiation with respect to 
depth, and hence '1j= (iw/l/aJ)1 /3 aj. Note that it is not 
possible to simplify the expression for '1j to (iw/l.a)1 /3 

because a j can take negative values and we alway~ take 
the root of /3j with phase n/6. 

Using the appropriate boundary conditions at the 
interface between the j'th and the (j + 1)'th layers, the 
coefficients A j and B) can be expressed in terms of the 
coefficients A j+ 1 and B j+ l' This relation between suc­
cessive layer constants can be utilized to build up a 
solution matrix by combining all the individual layer 
connection matrices. For the final compounded so­
lution matrix, there are 2n unknowns (the A /s and B/s 
for j=l,n) but only 2n-2 boundary condItions (two 
on each of the n -1 interfaces). This difficulty is over­
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come by noting that B" =0, i.e. no upward propagating 
wave is permitted from the lower half-space (which 
may, or may not, have (X,,=O but must not be less than 
zero), and by normalizing the layer constants by setting 
All = 1. The complex impedance at any point within the 
earth is then simply calculated in terms of the ratio of 
the horizontal electric to magnetic fields, viz. 

Z(z\ = Ex(z) (7) 
H)z) 

from which the magnetotelluric apparent resistivity and 
impedance phase functions are derived by 

1 
p)z)=-IZ(z)1 2 and c!J(z)=tan-I(ImZ(z)/ReZ(z)). 

Wl10 

In order to accommodate any model configuration, 
it is necessary to evaluate the boundary conditions for 
four separate cases, as illustrated in Fig. 4. Note that it 
is not possible to derive the fully general solution in­
volving Airy functions alone because of the compu­
tational restrictions for the case when (Xj = 0, i.e., the j'th 
layer has a constant conductivity. Associating the letter 

ek,/., - Ai (f3 2 (j'2) - Bi (f3 2 a(2) ° 
_ek,hJ 	 II~ Ai' (f3 2 (j~) I1]'2 B·'

1 
(f3 2(j2t) 0 

kl ('I 

0 0 Ai(f32 a~) Bi(f3 2 a'D -1 

k3 
0 	 0 Ai' (f3 2 a';) Bi' (f32 (j';) 

1]~ 

0 

0 

-I 

11~ 

C (constant) with a layer in which the conductivity is 
constant, and T (transitional) with a layer in which 
there is a gradient in conductivity, the four possible 
interface combinations are CC, TC, CT, and TT The 
layer connection matrices for the four cases are detailed 
below. 

Case CC: (J.j=(Xj+ 1 =0 

e J.l 	 e kj ".;(-,. -1 -I)
-kj+l 	 k j + 1 • e- kjh; 	 _ekJ1' j 

k; 	 k . 
.I 

-1 \ 

-~~+~) . 

-Ai(f3 j + 1 a;+ I) 

17J+ 1A"(f3 ')k. 	1 j+ 1 (jj+ I 
J 

Case TT: (X j =l= (Xj+ t =l= 0 

Hence, given anyone of the four cases, the coef­
ficients Ai and ~j can easily be computed in terms of 
Aj+ \ and Bj+ I. Note that it is not required that a(z) be 
continuous across CT, TC, or TT type interfaces. There 
can be a discontinuity in conductivity at all four types 
of interface, such that a~ =l= a~ + I. 

As an example, for' a two-layer earth in which the 
top layer is a transition zone and the half-space is of 
constant conductivity, then the solution matrix is given 
by the single connection matrix for case TC (Eq. (8 b)). 
Hence, the relation between the layer constants is given 
by 

Ai (f3I,al;,) Bi(f31 (jl;>
( (9)~;,) (~:) (~).= 
Ai'(f) 1 a~) Bi'(f3 1CT~) 


'll 0 


For a three-layered earth, as considered in detail by 
Kao (1981, 1982) and Kao and Rankin (1980), with a 
top layer of type C, a middle layer of type T, and a 
type C half-space, i.e. a total model descriptor of CTC, 
then the solution matrix is 

(10)(~) 
Any arbitrary solution matrix can be built up in a 

similar fashion from the individual /l -1 layer con­
nection matrices given by Eq. (8a)-(Sd). An illustration 
of the form of such a solution matrix is given in Fig. 5, 
where the crosses refer to elements, the values of which 
depend on the type of interface involved. The matrix 

(8a) 

(S b) 

(Sc) 

(Ai(f3F~) Bi(f3jCT.~) - Ai (f3j+ 1a;+ I) - Bi(f3;+ \ aJ+ I) ) 

(8 d)Ai'(f3;CT~) Bi'(f3;a~) _'1~~1 Ai'(f3;+ta';+I) -\~I Bi'(f3J+l(j~+I) 
where superscripts t and b refer to top and bottom respectively (see Fig. 3). 
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Fig.5. The form of the general solution matrix for n layers. 
Each x denotes an element, whilst each sub-matrix denotes 
one of the layer connection matrices. Note that An = 1 (arbi­
trary normalizing of the layer constants) and En = 0 (no up­
ward travelling wave permitted from the half-space) 

has the property of being extremely sparse for large 11, 

and therefore can be solved very efficiently. The so­
lution matrix can be made upper triangular in 4n oper­
ations, and then solved by back substitution. Hence, 
the number of operations is of O(n) instead of 0(n 3 ). 

For the evaluation of the complex Airy functions, we 
used the technique described in Schulten et al. (1979). 
Note that since our arguments of the Airy functions are 
all i1/ 3 times a constant, it is simple to decide which 
computational technique to employ as the arguments 
all lie along a line in the complex plane (see Schulten 
et aI., 1979, for details). 

Examples 

Oceanic lithosphere/asthcl1osphere 

As mentioned in the Introduction, there have been 
many experiments carried out on the sea-floor that 
have successfully identified the presence and location of 
an ELAS layer beneath various recording locations in 
both the Atlantic and Pacific oceans. There is a strong 
correlation between the depths to these conducting 
layers and the ages of the oceanic crust above them 
(Oldenburg, 1981; Filloux, 1980b). We consider, as a 
typical model for the oceanic lithosphere and astheno­
sphere, a superficial 20-km upper layer of resistivity 
SOm, underlain by a more resistive layer of 1000m to 
a depth of 80 km, below which is a half-space of SOm 
(see Fig. 6). This model has been taken from the in­
terpretation of data recorded at MODE Station S in 
the Atlantic near Bermuda by Cox et al. (1980). The 
theoretical response of this model in the period range 
0.1-1O.0cph (360-36,000s) is illustrated in Fig. 7 (solid 
line). 

If we assume that the error structure of the esti­
mated response function is such that, at any frequency, 
it describes a circle in the complex impendance plane 
of radius 8z (see Fig. 2a), then a 10 %error in 121 (which 
is approximately equal to a 20 %error in Pal is equiva­
lent to a 6° error in rPz' Assuming that with the most 
precise data possible the minimum standard errors 
achievable are 3.S % in Pa and 1 ° in rP, what minimum 
width would a transition zone need to be to be resolv­
able? Parameterizing the earth as CCTC in terms of 
(p l' hi) for layer 1, (P2' h2) for layer 2, (t 3) for layer 3 
(the transition zone), and (P4) for the half-space (see 
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Fig. 6. The two models considered for the oceanic litho­
spherejasthenosphere. The dashcd line indicates a 50-km tran­
sition layer between the lithosphere and asthenosphere 
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Fig. 7. The theoretical responses the two models illustrated 
in Fig. 6 in the period range of observation of a typical 
seafloor experiment. The solid lines are the response the 
model without a transition layer, whilst the dashed lines are 
the response the model with a 50-km transition layer, be­
tween the lithosphere and asthenosphere 

Fig. 6), where h2 is adjusted such that 111+112+t3/2 
= 80 km (i.e. the centre of the transition zone occurs at 
the previous conductivity discontinuity between the "li­
thosphere" and "asthenosphere"), then t 3 must be at 
least SO km to be detectable for the errors assigned. 
(Note that we have assumed no discontinuity in con­
ductivity at the top and bottom of the transition zone.) 
For such a model, the surface response of which is 
illustrated in Fig. 7, the maximum difference in the 
responses between it and a model without a transition 
zone is 3.S % in Pa at a period of 4,200 s, and 1 ° in rP at 
800 s - both of which occur at the maximum and 
minimum in Pa and rP respectively. From the apparent 
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resistivity data alone, the resolution of 1.3' i.e. the value 
of the appropriate element along the diagonal of the 
resolution matrix, is only 0.56. For the phase data 
alone, the resolution of this model parameter is 0.76, 
and combining the two, i.e. inverting the apparent re­
sistivity and phase data simultaneously, this value is 
0.99. In terms of model parameter ordering, t 3 is the 
1110st important parameter for the phase data, i.e. it has 
the largest contribution in the best-resolved mixed 
model parameter (given by the first row of the param­
eter eigenvector matrix). For Pa data alone, t 3 is classed 
as marginal/y important, as the standard error as­
sociated with it is of the order of 30 ~~. The worst­
resolved parameter of the model is P2' the resistivity of 
the lithosphere (this was noted by Cox et al., 1980). 
However, even though t.3 appears to be well resolved, 
given sufficiently accurate data, it displays a high cor­
relation (>0.95) with parameters 172 and P4' Hence, by 
varying 172 and P4 appropriately, it may be possible to 
find a model without a transition zone that satisfies the 
data to within the statistical error. 

Thus, it appears to be an extremely difficult task 
requiring highly precise phase data to identify a tran­
sition zone between the lower lithosphere and astheno­
sphere for this oceanic model. This is because the litho­
sphere is virtually "invisible" to electromagnetic fields 
due to it being between two conducting layers. 

C011t; nl'lIta I Iit170sphere/asthenosphere 

The model taken for the continentallithosphere/astheno­
sphere is the three-layer model presented by Jones 
(1982 a) for northern Sweden, which is illustrated in 
Fig. I a. For a theoretical response in the period range 
10-10" s with standard errors of 3.5 ~/~ on PII and lOon 
cl), the model parameter t 3 (see Fig. I c) becomes an 
important model parameter for Po data alone when it 
exceeds 40 km. For the phase data, however, t 3 be­
comes an important parameter when it is greater than 
30 km. At this thickness, the error in log (t 3) is 100 j,; 
for Po data alone, 80 ~/~ for q) data alone, and 20 ~;) if 
both p" and (I> are inverted together. 

Considering real data, Fig. 8 displays the apparent 
resistivity and impedance phase estimates, with their 
standard errors, for northern Scandinavia (Kiruna), de­
termined using the horizontal spatial gradient tech­
nique Jones (1980). Also illustrated in the figure is 
the response of the best-fitting three-layer model 
(Fig. la). The minimum thickness of t3 which causes at 
least one of the theoretical responses to exceed the 
error bounds is 50 k m (see Fig. I c), the response of 
which is also shown in Fig. 8. Undertaking an SVD 
analysis of the model with the transition zone (Fig. 1 c) 
and the data (see .Tones, 1982a, and llkisik and .Tones, 
1984, for details), with the a priorj constraint that Pt 
= 104 Qm (from the audiomagnetotelluric data of Wes­
terlund, 1972), gives the singular values (A) and param­
eter eigenvector matrices (V) listed in Table 1. The sin­
gular values have all been normalized such that a value 
of 1 implies 100 % standard error in that particular 
eigenparameter. The three tables are for the cases when 
there exists (i) p" data alone, (ii) q) data alone, and (iii) 
both Po and (/) data. The model parameter that has the 
largest contribution in the best resolved eigenparameter 
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Fig. 8. The Kiruna duta derived by .Iones (1980) together witl1 
their standard errors. Also shown are the theoretical re­
sponses to the two models illustrated in Fig. 1a, c. The solid 
lines are the response to the model without a transition layer, 
whilst the dashed lilies are the response to the model with a 
50-km transition, between the Iithosphere and asthenosphere 

Table 1. Singular values, parameter cigenvectors, and their 
variances for the Kiruna data illustrated in Fig.8 and the 
model in Fig. I c 

RHO matrix - i.e. pJfl data alonc - '1* = 3.9 
VI -0.-+5 -0.39 -0.69 0.39 -0.15 72 
1'2 0.59 0.48 -0.50 0.\1 -0.-+1 26 
1'3 -0.27 -0.11 0.04 -0.62 -0.73 \5 
U4 -0.03 -0.02 0.52 0.67 -0.53 1.5 
Vs 0.62 -0.78 0.02 -0.06 -0.06 0.3\ 

PHA matrix - i.e. (p(f) data alone - ,/=2.7 
VI -0.22 -0.04 -0.36 0.87 0.27 20 
V 2 0.85 -0.10 -0.50 0.0-J. -0.12 8.0 
u3 -0.18 -0.29 -0.46 -0.46 -0.68 0.74 
v4 -0.25 0.75 -0.53 -0.18 -0.23 0.6.3 
Vs -0.36 -0.58 -0.36 -0.07 -0.63 0.02 

TOT matrix -- i.e. both p,,(f) and <f)U) data . ,/=4.9 

VI -0.44 -0.37 -0.68 0.43 -0.13 73 
1)2 0.62 0.45 -050 () 12 -0.38 26 
v.l -(l.19 -0.19 -0.10 -0.71 -0.64 21 
v4 0.53 - 0.61 -0.28 -0.31 OAI 6.6 
Vs 0.32 -0.50 OA4 0.45 -0.51 2.5 

'" 	 q denotes the rank of the Jacobian matrix, which is the 
number of resolved eigenparameters 

for case (i) is ill' with a standard error of less than 2 ~1,. 
The third eigenparameter for case (i) has a significant 
contribution from t 3' and is t 3 P4' with an associated 
standard error of 7 ~~. Eigenparameter 4 is equivalent 
to t 3 /p" (=t 3 0",,), and is a marginally important param­
eter as its standard error is 45/~' For the phase data, 
however, case (ii), then the model parameter t3 domi­
nates the best-resolved eigenparameter, which has a 
standard error of 5 %. For case (iii), then t3 dominates 
the third eigenparameter, which has a standard error 
of 5 %. (For comparison of the layered-earth type 
models, both with and without a transition zone 
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(Figs. 1c and la respectively), with an inversion of the 
Kiruna data in terms of a continuous o-(z), Fig. I b 
illustrates an acceptable CH model derived by Parker's 
(1980) scheme. The model is the one with the largest 
permissible 0- 0 (0.05 Sm - 1) which is acceptable by the 
1.2 statistic. Disregarding the geophysically untenable 
conducting top layer implied by the inversion, the mod­
el is in excellent agreement with the layered-earth mod­
els with regard to the position of the lithospherejas­
thenosphere boundary and their respective resistivities. 
Parker's H + model for this data was also shown to be 
in agreement with the model illustrated in Fig. la (lo­
nes, 1984). 

Hence, given sufficiently precise phase data. it is 
possible to resolve parameter t 3 for a continental 
lithosphere/asthenosphere of the structure considered 
here. If there exists a lower crustal conducting layer, 
however, such as is true for the southern Finland re­
gion around Sauvamaki (lones et al., 1983), then the 
upper mantle is between two zones of higher conduc­
tivity. In this case the most important parameter for 
the phase data is no longer the model parameter t4 (the 
transition zone width between the third layer, i.e. the 
upper mantle of 100 Om and the asthenosphere), but is 
S2=h 2/P2' i.e. the depth integrated conductivity of the 
conducting lower crustal layer. However, addition of 
phase data of 10 standard error to apparent resistivity 
data of standard error 3.5 % increases the resolution of 
t4 from 0.47 to 0.79. 

Conclusions 

In this paper, the work of Kao (1981, 1982) and Kao 
and Rankin (1980), for the case where a model contains 
layers with linear gradients in electrical conductivity 
with depth, has been generalized. We have shown how 
the solution matrix for an n-Iayered earth can be built 
up from n -1 layer connection matrices, which are 
given in Eq. (8a)-(8d) for the four possible cases. The 
solution matrix for 11 large is exceedingly sparse and 
accordingly can be solved very efficiently. The tech­
nique for solution involves forming an upper triangular 
matrix, and then back substituting, hence no "general" 
matrix inverse is undertaken. 

It has been pointed out to us by an (unknown) 
referee that it is possible to derive a recursion re­
lationship for Z} in terms of Zj _ l' as in the uniform 
layer case. However. using the efficient matrix inversion 
technique described above leads to a solution for Zj 
with the same accuracy and entailing the same order of 
number of operations as for a recursion relation so­
lution. We prefer our solution matrix approach over a 
recursion relation for its mathematical elegance and its 
inherent simplicity in describing the physical relation­
ships at the interfaces. 

It would, of course, be possible to generate the 
response function of a transition layer by replacing the 
transition layer by a sufficient number of thin layers of 
constant conductivity and appropriate thicknesses. 
However, this approach is not satisfactory because (i) i.t 
is difficult to know the minimum number of thin layers, 
and their layer parameters, required (see the comments 
by Kao, 1982, on the work by Kao and ~ankin, 198?~, 
(ii) computation time is increased substantIally, and (m) 

an inversion of real data is made more difficult due to 
the increased number of model parameters. 

We have applied the theory presented to the specific 
problem of determining if a transition zone in electrical 
conductivity can be resolved between the base of the 
lithosphere and the electrical asthenosphere - or ELAS 
layer. Using a singular value decomposition of the sys­
tem matrix, the parameters for two particular models 
have been inspected for resolution. 

For the model representing "young" oceanic litho­
sphere with an EL AS layer at 80 km, it is not possible 
to determine if a transition zone exists between the 
lithosphere and asthenosphere due to the existence of a 
highly conducting layer beneath the ocean, as inter­
preted by Cox et al. (1980). Even with highly accurate 
apparent resistivity and phase data, the transition zone 
has to be of such large magnitude compared to the 
depth of the ELAS layer as to be physically untenable. 
Accordingly, layered-earth models, in which the con­
ductivity is constant within each layer, are satisfactory 
and adequate representations of the lithospher/astheno­
sphere boundary in this case. 

For a continental lithosphere/asthenosphere where 
the conductivity is an increasing function with depth, 
given sufficiently precise data it has been shown that 
the width of a transition zone can be resolved. How­
ever, it is imperative that the phase data be as well 
determined as the apparent resistivity data. The best­
resolved parameter of the phase data for the model con­
sidered (Fig. lc) together with the responses observed 
(Fig. 8) is t 3' the thickness of the transition zone layer. 
However, it is often the case that the error structure is 
more like Fig. 2b than like Fig. 2a, and hence the mod­
el structure is resolved mostly by the apparent resis­
tivity data. Accordingly. we wish to make the point 
strongly that workers be encouraged to attempt to de­
rive more precise phase data. 

Acknowledgements. One of the authors (AGJ) has received 
financial support from grants awarded to Professor G.D. Gar­
land (NSERCC A2115) and to Professors R.N. Edwards and 
G.F. West (NSERCC G050]), for which he wishes to acknow­
ledge his gratitude. TC would like to express his thanks to 
Drs. R.e. Bailey and R.N. Edwards for their support and 
informative discussions. Both authors are grateful to Or. R.L. 
Parker for providing the coding of his inversion routine and 
to the (unknown) referee for many valuable comments on an 
earlier version of this manuscript. 

References 

Abramowitz, M .• Stegun, LA: Handbook of mathematical 
functions. Dover, New York 1970 

Adam, A, Vanyan. L.L., Varlamov, D.A., Yegorov, LV.. Shil­
ovski, A P .. Shilovski. P. P.: Depth of crustal conducting 
layer and asthenosphere in the Pannonian basin de­
termined by magnetotellurics. Phys. Earth Planet. Intcr 28, 
251-260, 1982 

Chave, AD., von Herzen, R.P., Poehls. K.A, Cox, C.S.: Elec­
tromagnetic induction fields in the deep ocean north-east 
of Hawaii: implications for mantle conductivity and 
source fields. Geophys. J.R. Astron. Soc. 66. 379-406, 1981 

Cox, C.S., Filloux, J.H .. Gough. 0.1., Larsen, J.c., Poehls, 
K.A, von Herzen, R.P., Winter, R.: Atlantic lithospheric 
sounding. In: Elcctromagnetic Induction in the Earth and 
Moon, U. Schmucker, ed.: pp 13-32. Centr. Acad. Publ. 
Japan, Tokio and D. Reidel Pub!. Co., Dordrecht 1980 



30 

Edwards, R.N., Bailey, R.e., Garland, G.D.: Conductivity 
anomalies: lower crust or asthenosphere? Phys. Earth Pla­
net. Inter. 25, 263-272,1981 

Filloux, J.H.: North Pacific magnetotelluric experiments. In: 
Electromagnetic Induction in the Earth and Moon, U. 
Schmucker, ed.: pp 33-43. Centr. Acad. Pub!. Japan, Tokio 
and D. Reidel Pub\. Co., Dordrecht 1980a 

Filloux, .T.H.: Magnetotelluric soundings over the northeast 

Pacific may reveal spatial dependence and conductance of 

the asthenosphere. Earth Planet. Sci. Lett. 46, 244-252, 

1980b 


Filloux, .T.H.: Magnetotelluric exploration of the north Pa­

cific: progress report and prelimenary soundings near a 

spreading ridge. Phys. Earth Planet. Inter. 25, 187-195, 

1981 


Fischer, G., Schnegg, P.-A.: The dispersion relations of the 

magneto telluric response and their incidence on the in­

version problem. Geophys. J.R. Astron. Soc. 62, 661-673, 

1980 


Ilkisik, O.M., Jones, AG.: Statistical evaluation of MT and 

AMT methods applied to a basalt covered area in south­

eastern Anastolia, Turkey. Geophys. Prospect., in press 

1984 


In111an, J. R.: Resistivity inversion with ridge regression. Geo­

physics 40, 798-817, 1975 


Jones, A.G.: Geomagnetic induction studies in Scandinavia ­
I. Determination of the inductive response function from 
the magnetometer data. J. Geophys. 48,181-194,1980 

.Tones, AG.: On the electrical crust-mantle structure in Fen­
noscandia: no Moho and the asthenosphere revealed? 
Geophys. lR. Astron. Soc. 68,371-388, 1982a 

.Iones, A.G.: Observations of the electrical asthenosphere be­
neath Scandinavia. Tectonophysics 90,37-55, 1982b 

.Tones, AG.: The electrical structure of the Iithosphere and 

asthenosphere beneath the Fennoscandian shield. J. Geo­

magn. Geoelectr., in press 1984 


.Tones, AG., Olafsdottir, B., Tiikkainen, .I.: Geomagnetic in­

duction studies in Scandinavia - Ill. Magnetotelluric ob­

servations. J. Geophys. 54, 35-50, 1983 


Kao, D.: Magnetotelluric response on vertically inhomo­

geneous earth. J. Geophys. Res. 86,3027-3038, 1981 


Kao, 	 D.: Magnetotelluric response on vertically inhomo­

geneolls earth having conductivity varying linearly with 

depth. Geophys. Prospect. 30, 866-878, 1982 


Kao, D., Rankin, D.: Magnetotelluric response on inhomo­

geneous layered earth. Geophysics 45, 1793-1802, 1980 


Krasnobayeva, A.C., D'Yakonov, BP., AstafYev, P.F., Ba­
talova, O.V., Vishnev, V.S., Gavrilova, I.E., Zhuravleva, 
P.B., Kirillov, S.K.: Structure of the northeastern part of 
the Baltic shield based on magnetotelluric data. lzvestiya, 
Earth Phys. 17,439-444, 1981 


Kurtz, R.D.: Magnetotelluric interpretation of crusta1 and 

mantle structure in the Grenville Province. Geophys . .T.R. 

Astron. Soc. 70,373-397, 1982 


Larsen, le.: Removal of local surface conductivity effects 

from low frequency mantle response curves. Acta Geo­

daet., Geophys. et Montanist. Acad. Sci. Hung. 12, 183­
186, 1977 


Lawson, e.L., Hanson, R.J.: Solving least-squares problems. 

Prentice-Hall, New Jersey, ISBN 0-13-822585-0, 1974 


Oldenburg, D.W.: Conductivity structure of oceanic upper 

mantle beneath the Pacific plate. Geophys . .T.R. Astron. 

Soc. 65, 359-394, 1981 


Parker, R.L.: The inverse problem of electromagnetic in­

duction: existence and construction of solutions based on 

incomplete data . .T. Geophys. Res. 85,4421-4425, 1980 


Schmucker, U.: Status report on the Project ELAS. IAGA 

News 20, 62--72,1981 


Schmucker, U.: Reports on an informal meeting of the Pro­

ject ELAS. IAGA News 21, 89-90, 1982 


Schulten, Z., Anderson, D.G.M., Gordon, R.G.: An algorithm 
for the evaluation of the complex Airy functions . .I. Comp. 
Phys. 31, 60-75,1979 

Vanyan, L.L.: Progress report on ELAS-Project. IAGA News 

19, 73-84, 1980 


Weidelt, P.: The inverse problem of geomagnetic induction. Z . 

Geophys 38, 257-289, 1972 


Westerlund, S.: Magnetotelluric experiments in the frequency 

range 0.01 Hz to 10 kHz KGO Report, 72: 10, Kimna 

Geophysical Observatory, 1972 


Wiggins, RA.: The general linear inverse problem: impli­

cations of surface waves and free oscillations for Earth 

structure. Rev. Geopbys. Space. Phys. 10, 251-285, 1972 


Received December 1, 1983; Revised version March 21, 1984 
Accepted March 22. 1984 


