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Abstract The Meyer-Neldel Rule (MNR), or compensation law, linearly relates the preexponent term to
the logarithm of the excitation enthalpy for any process that is thermally driven in an Arrhenian manner,
and MNR fits can be used to calibrate and validate laboratory experimental results. Both robust least squares
linear regressions and nonrobust regressions on selected subsets for individual minerals with sufficient
experimental data demonstrate that hydrogen diffusion in minerals obeys the MNR with differing MNR
intercepts and gradients depending on the mineral. In particular, nominally anhydrous mantle minerals
have very distinct and different MNR parameters compared to hydrous and crustal minerals, with garnet
proving to be an outlier lying in between the two. Furthermore, the variations of the estimated intercepts
and gradients of the various MNRs are not random, but remarkably they themselves fall on a striking linear
trend. This observation, if more broadly true, has profound implications for materials sciences and under-
standing of solid-state physics, as it implies that the compensation rule is itself compensated.

1. Introduction

The Arrhenius equation is a simple description of any process that is thermally activated, and is:

X 5 X0 exp –E=kTð Þ; (1)

where E is the activation energy of the process (in eV), k is Boltzmann’s constant, X0 is the preexponent
term, and T is the temperature (in Kelvin) (alternatively, in some fields E is reported in kJ/mol and k is
replaced by R, the gas constant). It was initially proposed in 1884 by Dutch physical chemist Jacobus Henri-
cus van’t Hoff to describe empirical observations of the temperature dependence of chemical reaction rates.
Five years later, Swedish physical chemist Svante August Arrhenius, working with van’t Hoff in Amsterdam
after spending time with Ludwig Boltzmann in Graz, provided a theoretical justification for it based on his
work on the disassociation of electrolytes [Arrhenius, 1889]. Equation (1) is as remarkably successful as it is
simple, and finds application in many areas of science besides the obvious ones on reaction rates [e.g.,
Hanggi et al., 1990], ranging from soil respiration [Lloyd and Taylor, 1994] to the growth rate of bacterial cul-
tures [Ratkowsky et al., 1982] to the drying of thin slices of garlic [Madamba et al., 1996]. In the geosciences,
its main applications describe electrical and thermal conduction in Earth materials, chemical denudation,
geochemical process reactions, chemical weathering, diffusion processes [Zhang et al., 2011], rheology, etc.

Initially in chemistry in the middle to late 1920s [Constable, 1925; Cremer and Schwab, 1929; Schwab, 1929;
Polissar, 1930, 1932], then independently shortly later in physics [Meyer and Neldel, 1937], scientists began
to observe empirically a linear relationship between the logarithm of the preexponent term X0 and the acti-
vation energy E (more correctly activation enthalpy) for any process that could be described by an Arrhe-
nius equation. Comparing the natural logarithm of X0 with E, then a simple linear relation was found to hold
for many materials and processes:

ln X0ð Þ5 a 1 b E ; (2)

where intercept a and slope b are constants. This rule, termed the Meyer-Neldel rule [Meyer and Neldel,
1937] (MNR) in physics and the compensation law or isokinetic relationship in chemistry [Linert and Yelon,
2013], (also in different guises the Barclay-Butler rule [Barclay and Butler, 1938], the h rule [Schwab, 1950],
the Smith-Topley effect [Manche and Carroll, 1979], and the Zawadzki-Bretsznajder rule [Zawadzki and
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Bretsznajder, 1935]) is upheld in many areas of materials science in physics, chemistry, and biology, includ-
ing compounds in semiconductors, various reduced oxide semiconductors, biological death rates, and
chemical reactions [see Yelon et al., 1992; also special volume of Monatshefte f€ur Chemie, vol. 144, issues 1–
2, edited by Linert and Yelon, 2013].

Substituting (2) into (1) yields:

ln X 5 ln X01 –E=kT 5 a 1 b – 1=kTð Þ E : (3)

This implies that if the compensation law exists for a substance, the process converges to a constant charac-
teristic value of exp(a) at the characteristic temperature T0 5 1/bk, which is termed the isokinetic tempera-
ture and is a value particular to each process and each material.

Solid-state physicists have discussed the MNR for many years (see discussion in Widenhorn et al. [2002]),
with Dyre [1986] proving that only one valid phenomenological model exists that explains it, and that
model is based on an exponential probability distribution of energy barriers. Some have concluded that it is
a consequence of a one phonon activated process [Yelon et al., 1992, 2006], with the suggestion that miner-
als/species that have large activation barriers (large E) to diffusion compensate by increasing their attempts
to diffuse [Boisvert et al., 1995]. Shimakawa and Aniya [2013] recently presented a new model to explain the
MNR in atomic diffusion of condensed matter taking into account phonon absorption and emission proc-
esses by diffusing atoms.

The MNR is not without contention however, even to the point of discussion on statistical significance of fit-
ting experimental data [Dunstan, 1998; Barrie, 2012c, 2012a, 2012b; Yelon et al., 2012]. Nevertheless, this
empirically observed rule is being demonstrated to be upheld in more and more cases, and it can be
employed to check laboratory observations and to provide fundamental constraints on the derivation and
estimation of X0 and E from experimental data given their interrelationship through the MNR. Thus, this
relationship can be used to calibrate and validate laboratory experiments, an example is given in Jones
[2014] for proton conduction in olivine, and indeed can be used to determine an appropriate value for one
of them given the other, as shown for oxygen diffusion in diopside by Jaoul and Bejina [2005] for their geo-
speedometry calculations.

For diffusion generally, the MNR has been demonstrated to be upheld for a wide variety of diffusing species
in a wide variety of materials [e.g., Mehta, 2010; Shimakawa and Aniya, 2013]. Indeed, Boisvert et al. [1995]
make the bold statement that ‘‘we have unambiguously established the validity of the Meyer-Neldel law for
phonon-activated Arrhenius processes’’ based on their consideration of diffusion on metallic surfaces. The
impact of this confirmation and validation of the MNR has yet though to find its way into the geosciences
in a meaningful manner.

For diffusion in minerals, numerous workers have shown that the MNR is upheld for many diffusing species
in individual minerals, with the first study being that of Hart [1981]. Examples include oxygen diffusion in
diopside [Jaoul and Bejina, 2005], in perovskite [Berenov et al., 2001], and in a wide variety of minerals
[Zheng and Fu, 1998], silicon diffusion in silicate minerals [Bejina and Jaoul, 1997], Fe, Mn, Mg, and Ca diffu-
sion in garnets [Korolyuk and Lepezin, 2008] (where Fe, Mn, and Mg are fit as one diffusing species), argon
diffusion in sericites [Batyrmurzaev, 2003], Fe/Mg interdiffusion in olivines and garnet [Jaoul and Sautter,
1999], and Ar, H, Pb, and Sr diffusion in a wide array of minerals [Zhao and Zheng, 2007]. Proton diffusion
has been studied the most of all diffusing species, and adherence to the MNR has been reported for perov-
skites [Kreuer, 1999], as well as other crustal and upper mantle minerals discussed below. Brady and Cherniak
[2010] give an excellent recent review, and discuss the consistency of the Arrhenius parameters with the
MNR for He, Ar (hydrous silicates only), Mg, Pb, REEs, Si, Sr, Ca, and for the alkaline earth elements as a
group. Na and K are reported to show less consistency, but explained as possibly due to the limited range
of activation energies observed. Hydrogen diffusion is not treated extensively in their review, only that by
excluding H, He, and Li values they obtained a very good linear fit for diffusion by the other species in diop-
side and plagioclase.

In this paper, we will closely examine the MNR relationships derived for hydrogen diffusion in different min-
erals in the Earth’s crust and upper mantle. This examination is primarily not conducted on an experiment-
by-experiment, case-by-case basis, but through employing modern robust statistical methods to perform
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linear regressions after automatically removing outliers, identified objectively not subjectively, and assum-
ing there is error in both fitted Arrhenius values (preexponent term and activation energy). In addition
though, following more standard practice we consider subsets of data that have been subjectively selected,
on objective grounds, for inclusion. We show that either approach yields the same MNR estimates, with the
robust ones being statistically superior (smaller error estimates, larger correlation coefficients).

Furthermore, we show that the various MNR intercepts and gradients for the different minerals all them-
selves fall on a straight line, suggesting that the Meyer-Neldel Compensation Law is itself compensated. It
needs to be tested whether this is a general result for processes that can be described by the Arrhenius
equation, but if so then the implications for one phonon processes are profound.

2. MNR Parameters for Hydrogen Diffusion in Minerals

Herein, we consider diffusion in Earth minerals, specifically hydrogen diffusion for which the most extensive
experimental observations exist, and take advantage of four recently compiled databases [Ingrin and Blan-
chard, 2006; Zhao and Zheng, 2007; Brady and Cherniak, 2010; Farver, 2010] plus prior work of others (see
supporting information Table S1) and some newer data. (Where possible, original sources were checked; a
few errors were found in the review compilations.)

There is an immense body of literature in the Solid-State Physics community, vastly larger than the geosci-
ence community by an order of magnitude, reporting hydrogen diffusion in many materials, particularly
those of interest to semiconductor and fuel cells research (e.g., silicon, germanium, palladium, lithium, etc.),
but here we restrict ourselves to Earth’s crustal and upper mantle minerals. We note that hydrogen has
rapid diffusion rates compared to other species (hence its interest to the electromagnetic induction com-
munity since the insightful paper by Karato [1990]), demonstrating that hydrogen diffuses through the lat-
tice as protons not coupled to other ionic species [Farver, 2010].

Supporting information Table S1 is a collation from all sources, mostly from review papers (with original
references cited) but also original sources. Duplicate entries are noted and removed. If there are different
model fits to the same raw diffusion data, these represent different and independent pairs for inclusion in
the robust regression analysis; these different models are though excluded from the subjectively selected
subsets. Table 1 is undoubtedly incomplete, likely contains errors and inconsistencies from the published
sources and from transcription between the different units used by different authors, but it does represent
the most complete ensemble of estimates of Arrhenius fits to hydrogen diffusion data published to date.
The collection lists effective diffusivity, which is dominated by lattice (i.e., vacancy) diffusion but may contain
results of interstitial diffusion. Also, at least one grain boundary diffusion point [Demouchy, 2010] is included
on purpose in the robust regressions of olivine and sets containing olivine to test the statistical methods
adopted for their ability to identify and cull incompatible points. Grain boundary diffusion is known to be
far faster than lattice or interstitial diffusion [e.g., Dohmen and Milke, 2010], but are the Arrhenius values
found consistent or inconsistent with the Arrhenius values of the other processes? This we test through con-
sistency with, or lack thereof, the MNR regression. That grain boundary diffusion point is removed from all
selected sets of data.

The primary approach taken here for analyzing the minerals data sets is an objective statistical one for iden-
tifying and removing outliers. An alternative approach is to examine each data pair of values (activation
energy and preexponent coefficient) and decide whether the pair should be included in, or excluded from,
further analysis based on knowledge of experimental procedures. Such a subjective approach may lend
itself to the introduction of significant bias error though unwarranted exclusion of data or through lack of
exclusion of other data as there may be insufficient information upon which to make an informed decision.
Indeed, we know that the Demouchy [2010] point is a measurement of grain boundary diffusion in olivine—
but what about those points resulting from experiments where the dominant diffusion process, lattice
(vacancy), interstitial or grain boundary, is unknown? Robust statistical methods offer the objective tools to
perform identification and rejection of outliers that do not conform to the general model. However, to dem-
onstrate the similarities and possible differences between automatic statistical culling based on outlier iden-
tification and careful selection, the regressions on each mineral data set are performed twice, once with all
data (excluding duplicate data) performing robust regressions using iterative culling, and the second time
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using nonrobust regressions on only those points in each set considered appropriate through careful
selection.

The diffusion equation for a single diffusing species is:

D 5 D0 exp 2E=RTð Þ; (4)

where D is the diffusion rate (m2/s), D0 is the preexponent diffusion rate (m2/s), E is activation enthalpy (J/
mol), R is the gas constant (J/mol K), and T is the temperature (K). Others have previously considered the
MNR applied to diffusion, initiating with the work by Winchell [1969] on silicate glasses, then more generally
for natural silicate minerals in the compilation and analysis by Hart [1981]. A broad treatment of diffusion
by many species in many minerals is contained in the recent review by Brady and Cherniak [2010]. Two prior
MNR analyses considered diffusion of individual species in all minerals simultaneously [Zhao and Zheng,
2007] and the diffusion of all species, except hydrogen, simultaneously in individual minerals [Brady and
Cherniak, 2010], but this is the first study to consider all available data for a single species of diffusion,
namely hydrogen, in many minerals separately, and to demonstrate a rather remarkable phenomenon.

Table 1. LS Regression Models of the Intercept (a) and Slope (a), With Their Standard Errors (SE), of Hydrogen Diffusion in Minerals Using a Robust Fasano-Vio LS Regression with Rous-
seeuw LTS With Cook’s Distance Based Rejection Iterating Until the ‘‘Knee’’ of SE Descent Curvea

Data

Intercept
(a) (log10

(D0 (m2/s)))

Gradient
(b) (log10

(D0 (m2/s)/eV))
SE a

(log10 (D0 (m2/s))

SE b
(log10 (D0

(m2/s)/eV))
Correlation
Coefficient

Isokinetic
Temperature

(�C)

All (olivine (24), pyroxenes (15), rutile (13), other NAMs (2),
garnet (12), quartz (11), feldspars (2), amphibole (5),
hydrous minerals (53), 137 points total, 45 culled)

211.2 4.03 0.26 0.15 0.94 1000 6 50

All selected (olivine (15), pyroxenes (15), rutile (9), other NAMs
(2), garnet (12), quartz (7), feldspars (2), 62 points selected)

211.6 24.07 0.46 0.22 0.91

Mantle minerals—olivine (24), pyroxenes (15), rutile (13),
other NAMs (2) (54 points, 4 culled)

29.60 3.17 0.32 0.16 0.94 1300 6 80

Mantle minerals (olivine (15), pyroxenes (15), rutile (9), other
NAMs (2), 41 points selected)

29.98 23.28 0.40 0.19 0.93

Crustal minerals—quartz (11), feldspars (2), amphibole (5) (18
points, 4 culled)

218.4 8.49 0.77 0.53 0.98 320 6 40

Crustal minerals (quartz (7), feldspars (2), 9 points selected) 217.8 27.75 1.85 1.21 0.91
Olivine (24 points, 3 culled) 28.89 2.67 0.45 0.22 0.94 1600 6 150
Olivine (15 points selected) 29.06 2.71 0.59 0.26 0.90
Pyroxenes (15 points, 1 culled) 210.4 3.49 0.88 0.40 0.92 1200 6 160
Pyroxenes (15 points selected) 210.9 3.68 0.96 0.45 0.90
Pyroxenes monoclinic (11 points, 2 culled) 210.2 3.24 0.79 0.36 0.96 1300 6 175
Pyroxenes orthoclinic (4 points, 1 culled) 214.7 4.86 0.83 0.35 0.99 765 6 75
Rutile (13 points, 3 culled) 28.81 3.25 0.36 0.37 0.95 1300 6 180
Rutile (9 points selected) 210.9 4.67 1.19 1.13 0.77
Garnet (12 points, 2 culled) 212.5 4.73 0.49 0.23 0.99 800 6 50
Garnet (12 points selected) 211.9 4.28 0.65 0.28 0.98
Quartz (11 points, 2 culled) 219.6 9.05 0.86 0.54 0.99 280 6 35
Quartz (7 selected) 218.9 8.83 1.90 1.41 0.93
Amphibole (5 points, 2 culled)
None selected 223.8 14.2 0.96 0.96 0.99 82 6 25
Hydrous minerals (53 points, 5 culled) 217.0 7.56 0.87 0.84 0.67 400 6 75
None selected
MNR LS Regressions From Brady and Cherniak [2010]
Alkali feldspars 212.65 2.73 0.62 1575
Diopside 220.04 3.68 0.97 1100
Plagioclase 214.70 2.70 0.83 1600
Quartz—Li, Na, K, and Ca 29.61 3.73 0.95 1080
Quartz—Si and Ti 214.07 2.33 0.93 1890
MNR Regression for H Diffusion in All Minerals From Zhao and Zheng [2007]
All minerals 213.1 4.87 0.67 0.24 0.96 760 6 7

aThe second line for each individual mineral (in italics) and the sets represents the nonrobust FV LS regression for those data selected from the ensemble as being appropriate for
inclusion based on consideration of experimental procedure.
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The Arrhenius least squares model fits reported in the literature for the minerals considered are listed in
Table 1, and are olivine (24 values), pyroxenes (17 values), and rutile (13 values), other NAMs (2 values),
grouped in the ‘‘mantle’’ group, garnet (12 values) in its own group, then quartz (12 values), feldspars (2 val-
ues), and amphiboles (5 values) in the ‘‘crustal’’ group, finally hydrous sheet and other silicates (56 values).

The robust least squares (LS) regressions were performed using Rousseeuw’s Least Trimmed Squares (LTS)
[Rousseeuw, 1984] approach with Cook’s Distance [Cook, 1977] based rejection, iterating to the ‘‘knee’’ of the
standard error descent curve, analogous to the L-curve approach in nonlinear inversion [Hansen, 1992],
assuming error on both the activation enthalpy and the preexponent component using Fasano and Vio’s (FV)
[Fasano and Vio, 1988] adaptation of York’s [York, 1966] method (see description and example application in
the supporting information for more details). At the knee the estimates of intercept and slope and their asso-
ciated errors are such that succeeding culling iterations yield estimates that lie within the errors of the esti-
mates at the knee point. There is no justification for continuing with further culling iterations beyond this
point. In addition, the data sets have been multiply refined and reduced by excluding or including points to
test for bias and for contamination, and the combinations tested all resulted in the same final MNR parame-
ters, to within statistical estimation error. As we will show, for only one set of data do the robust regression
estimates differ significantly, i.e., more than one standard deviation, from the regression estimates made on
selected data.

2.1. Regression to Olivine Diffusion Data
As an example of the regression approach, the experimentally determined values of E (in eV rather than kJ/
mol, where 1 eV 5 96.4869 kJ/mol, for consistency with MNR results for diffusion as reported in the solid-
state physics literature and in other geoscience subdisciplines, such as electrical conduction in minerals)
and log10(D0) (base-10 logarithm rather than natural logarithm, with D0 in m2/s) for diffusion of hydrogen in
olivine are plotted in Figure 1, totaling 24 separate estimates, including two very recent well-calibrated val-
ues by Padr�on-Navarta et al. [2014] (the two red points with error bars). A standard least squares (LS) regres-
sion to these 24 values, as performed with, e.g., Excel and most other off-the-shelf codes, yields an intercept
and slope of (28.17 6 0.62, 2.26 6 0.31) (red line in Figure 1) with a correlation coefficient of 0.84. However,
a standard LS regression assumes that the X data along the ordinate are independent, i.e., without error,
which is a fallacy in this case (and in many other cases in the sciences), and that there are no outliers in the
data set; outliers cause severe leverage effects and result in hugely erroneous regression estimates. The
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Figure 1. Plot of Arrhenius parameters from 24 data values for hydrogen diffusion in olivine with least squares (LS) regression fits to the
points. The standard least-squares regression is shown by the red line, the Fasano-Vio (FV LS) regression by the green line, and the least
trimmed squares robust Fasano-Vio (LTS FV LS) regression by the blue line after culling the three data points outlined with red circles.
Dashed blue lines are the 68% confidence intervals on the LTS FV LS regression. The orange line, with its 68% confidence limits (dashed
orange lines), is the regression excluding the Padr�on-Navarta et al. [2014] data shown in red.
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Fasano-Vio (FV) LS regression to all 24 data points yields different intercept and slope of (29.66 6 0.71,
3.09 6 0.36), with a correlation coefficient also of 0.84 (green line in Figure 1).

Applying the LTS FV robust scheme to the 24 points yields the variations of the slope, intercept, and their
standard errors and correlation coefficient with delete-1 culling iterations as shown in Figure 2, where the
knee of the standard deviation and the asymptotic behavior of the slope and intercept suggest that three
points need to be removed. The FV LS regression when those three points are removed has an intercept
and slope of (28.89 6 0.45, 2.67 6 0.22) (blue line in Figure 1) and a far higher correlation coefficient of
0.94. Figure 3a shows the intercept and slope pairs for each iteration, together with their error estimates,
and after three iterations the solution converges with estimates from further iterations remaining within the
error bounds of those from the third iteration. Figure 3b shows the individual delete-1 estimates for each
culling iteration, and the clustering for iteration 3 and higher iterations demonstrates the insensitivity of the
MNR estimates to individual data pairs from the data set once the three outliers have been culled.

The culled points are identified in Figure 1 and are indicated in supporting information Table S1 in the order
of being culled (C1, C2, and C3). One point is an obvious outlier, and that is the olivine value at (E 5 0.56 eV,
log10(D0) 5 23.4) that was reported by Demouchy [2010, 2012] for grain boundary diffusion. Grain boundary
diffusion is an entirely different process from lattice diffusion, so it is not surprising that this point is discord-
ant with the rest of the olivine diffusion data set. This point was the first to be culled by the LTS FV LS algo-
rithm in any of the sets that included it, further demonstrating the veracity of the LTS approach at
identifying outliers that are inconsistent with the bulk of the data set. The point was included purposely to
test the efficiency of the approach at recognizing and culling outliers, and the scheme performed flawlessly
regardless of the subset analyzed. The second point to be culled is that derived from Libowitzky and Beran
[1995] of (1.39, 27.50) reported in the compilation of Ingrin and Blanchard [2006], and the third is that of
(1.19, 27.91) derived by Zhao and Zheng [2007] using an ionic porosity law.

Another important point to be gleaned from Figure 3b is that any subjectively chosen subset of the olivine
data set of 24 points will result in LS regression MNR estimates within statistical errors of those listed in
Table 1 for olivine, provided that the same three points are removed as identified objectively by the LTS
culling iterations. Although the inconsistency of the Demouchy [2010, 2012] point is obvious, the danger
inherent in subjective selection is in not identifying the consequences of including the two other points,
(1.39, 27.50) and (1.19, 27.91).

Note that the single model Arrhenius data for wadsleyite of (1.27, 25.02) (green point in Figure 1) in the
Brady and Cherniak [2010] collation lies almost on the regression model line for olivine, and well within the
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Figure 2. Variation of MNR slope and intercept, and their errors and the regression coefficient, with increasing iteration of the robust
Fasano-Vio LTS regression for the olivine diffusion data shown in Figure 1.
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one sigma confidence intervals of the regression. Its exclusion has no effect on the LTS FV LS regression—
almost exactly the same model is returned (28.95 6 0.47, 2.69 6 0.23) without it compared to
(28.89 6 0.45, 2.67 6 0.22) with its inclusion, both with a correlation coefficient of 0.935. It is surprising that
diffusion of hydrogen in the high pressure form of olivine should fall exactly on the MNR line for olivine
itself, given that wadsleyite has a very different lattice structure from olivine. This calls for further examina-
tion and understanding of hydrogen diffusion in higher pressure phases.

A second regression was performed on the selection of 15 values from this data set of 24 chosen for their
appropriateness based on experimental procedure; the reason for removal of those rejected, marked with
an X, is given in Table 1. The nonrobust FV LS regression to those 15 points yields an MNR model of
(29.06 6 0.59, 2.71 6 0.26) with a correlation coefficient of 0.90. This model lies well within the LTS FV LS
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Figure 3. Variation of MNR slope and intercept with increasing iteration of the robust LTS Fasano-Vio LS regression for the olivine diffusion
data shown in Figure 1. (a) Estimates of the MNR parameters with error for each culling iteration. (b) DeleteS estimates of the MNR parame-
ters for each iteration.
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model of (28.89 6 0.45, 2.67 6 0.22). This selection, although it is based on objective criteria is nonetheless
a subjective one; other workers may have included some of the discarded data or excluded others. How-
ever, as shown by the clustering in Figure 3b, it is immaterial which data are selected; provided the three
points identified by the robust regression are removed, a statistically consistent regression model will result.

The two Arrhenius model pairs of Padr�on-Navarta et al. [2014] for olivine, (3.07, 21.1) and (4.78, 3.3) (red
points in Figure 1), were published as this paper was in second revision and are particularly worthy of more
detailed examination. These two are very interesting as they are estimates of different rates of diffusion of
hydrogen from different substitution sites within the lattice. The fastest diffusion rates were observed for
hydrous defects related to trivalent cations and Mg vacancies in the Ti-doped forsterite, with slower diffu-
sion by the hydrous defects related to Ti and a fraction of the hydrated Si-vacancies. Far slower was the dif-
fusion of hydrogen from Si-vacancies in the undoped MgO-buffered experiments. The nonrobust standard
LS fits to the data yielded Arrhenius pairs of (3.07 6 0.15, 21.1 6 0.6) (i.e., activation enthalpy of 296 6 14
kJ/mol with a preexponent D0 of 1021.160.6) for [Si] and [Ti] in the Ti-doped fosterite, and (4.78 6 0.11,
3.3 6 0.4) (461 6 11 kJ/mol with a preexponent D0 of 103.360.4) for [Si] in the undoped MgO-buffered foster-
ite. As is often the case with such regression model fits, the gradient, i.e., the activation enthalpy, is better
resolved with lower error than the intercept, i.e., the preexponent component.

The original version of this manuscript only considered the 22 model diffusion in olivine estimates without
the two new data of Padr�on-Navarta et al. [2014]. The LTS FV LS regression to those 22 data pairs, with the
same three points culled, yields a model with an MNR intercept and slope of (29.98 6 0.87, 3.36 6 0.50),
with a correlation coefficient of 0.79 (orange line in Figure 1 with 68% confidence intervals shown). This
model lies, within error, statistically close to the model including those two points, i.e., (28.89 6 0.45,
2.67 6 0.22).

A test of how well this MNR approach is performing is to examine the prediction of the Arrhenius preexpo-
nent component given the activation enthalpy, or of the activation enthalpy given the preexponent compo-
nent, for those two new data based on the prior regression model. However, as is obvious from Figure 1,
the two new points have activation enthalpies that are outside to well outside those previously reported for
hydrogen diffusion in olivine, and the extrapolation to those higher values is with very poor confidence, as
signified by the 68% confidence intervals of the prior model (orange dashed lines in Figure 1). This will be
explored further below with the mantle data set, as it contains activation enthalpies that overlap with the
two new points.

2.2. Regressions to All Other Individual Minerals
The experimentally determined values of E and log10(D0) for all minerals are listed in supporting information
Table S1 and are plotted in Figure 4, together with best-fitting robust linear regressions to all of the data and
various subsets, following the approach described above for olivine. The LTS FV LS regressions to the data
sets and subsets are listed in Table 1. For all individual sets of minerals, only a small fraction of the data, up to
three points at most, needed to be culled to obtain stable regressions. The amphibole set comprises only five
points, and two of them are culled to yield a stable regression. Thus, the regression is only to three points,
and hence the amphibole MNR estimates are not used in the regression to the individual minerals below.

For the very heterogeneous ‘‘all data’’ set far more need to be culled, 45 points of the 137 data, which is evi-
dence that the set cannot validly be described by a single regression. This is discussed further below.

Nonrobust regressions are performed of selected data in each mineral set, and of the combinations of the
mineral sets. The parameter estimates and their errors are given in Table 1 in italics. Note that in all cases,
except for rutile, the nonrobust regressions of the selected data are exactly the same, to within error bounds,
of the robust estimates on nonselected data, with the robust estimates having superior statistics (smaller error
estimates, larger correlation coefficients). This demonstrates that objective culling using robust statistics is as
effective at determining the MNR parameters as subjective selection made by experts in diffusion.

Note that all hydrous minerals are rejected for subjective analysis (amphibole, hydroxyl minerals) as OH-
and H2O are major elements in those minerals and not trace elements as in nominally anhydrous minerals
(NAMs). Major elements are known to have concentration-dependent diffusivity, as for example an Fe-Mg
interdiffusion coefficient. This likely explains the much broader field for the hydrous minerals compared to
NAMs. Nonetheless, the LTS FV LS regression yields MNR estimates for the slope and intercept of the
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hydrous mineral set that are well within 1r of the MNR estimates for the selected crustal minerals set, so
are statistically indistinguishable.

Also listed in Table 1 for comparison and completeness are the regression models derived by Brady and
Cherniak [2010] for diffusion by all species, excluding hydrogen, in specific minerals, and that of Zhao and
Zheng [2007] for hydrogen diffusion in all minerals taken together. Given the variation that exists in MNR
parameters for different diffusing species and for different minerals, such averaging is questionable. The
Brady and Cherniak [2010] data are included here to emphasize the point that diffusion of one species in a
material will not necessarily yield the same MNR parameters as other diffusing species, and unless proven
otherwise, all diffusing species should be considered independently. The exercise performed here for hydro-
gen must be performed for each other diffusing species individually in each mineral.

There are essentially two sets of MNR parameters—a set comprising nominally anhydrous dominantly mantle
minerals (NAMs, light gray field in Figure 4) that has a shallow MNR gradient (3.25–3.5), and a set comprising
crustal minerals and dominantly crustal hydrous minerals (dark grey field in Figure 4) that has a far steeper
gradient (9.0–10.0), with garnet lying in between the two (gradient of 4.0) (green field in Figure 4). The isoki-
netic temperatures for hydrogen diffusion in the specific minerals are listed in Table 1 and for the subsets is of
the order of midcrustal temperatures (approximately 300–400�C) for crustal minerals and deep lithospheric to
asthenospheric temperatures (1200–1600�C) for mantle minerals, with garnet at midlithospheric temperatures
(800�C).

The mantle minerals are all (nominally) anhydrous, whereas the crustal minerals comprise hydrous and
anhydrous (quartz, feldspar) minerals. Garnet is anomalous and lies between the two sets. Dividing the gar-
net set into crustal (grossulars) and mantle (pyrope) subsets does not make a difference, as the two arrays
overlap each other and the estimates of the intercepts and slopes from the two LTS FV LS regressions lie
within each other’s error bounds.

2.3. Regression to All Data
Performing the LTS FV LS regression on the total data set of 137 points results in 45 being culled in order to
get to the knee of the trade-off curve. The variation of the MNR slope and intercept for 59 culling iterations
is shown in Figure 5, where the 0th iteration, i.e., all points regressed, is the pair on the bottom right of the
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grain boundary diffusion.
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plot, point (214.5, 5.82) in black. Subsequent iterations moved the slope/intercept solutions progressively
toward the top left, and after 45 iterations the solutions converged on asymptotic values of (211.2, 4.03) for
the intercept and the slope, respectively. The Arrhenius values being culled are all those lying in the bottom
left side of Figure 4, i.e., all of the hydroxyl points, so it is not surprising that the All Data set has an MNR
intercept and slope close to that for the mantle minerals.

This exercise highlights a caution when performing linear regressions; one must be careful that there are
not two (or more) distinct processes operating that, due to the paucity of data and/or data error, are missed
and the data are fit to a single process by adopting a linear regression. This effect is considered below in a
detailed examination of the pyroxene data set.

2.4. Regression to Mantle Minerals
The model data for mantle minerals form a set that comprises 54 data; 24 for olivine, 15 for pyroxenes, 13 for
rutile, and 2 for other NAMs (light gray set in Figure 4). Performing the same LTS FV LS regression approach as
above yields a robust solution, after culling four data pairs, with an intercept and gradient of (29.60 6 0.32,
3.17 6 0.16) with a correlation coefficient of 0.94 (orange line in Figures 4, and blue line in Figure 6).

The submitted version of this manuscript only considered 52 model diffusion estimates for mantle minerals,
i.e., without the two new model olivine data of Padr�on-Navarta et al. [2014], (3.07, 21.1) and (4.78, 3.3), and
the LTS FV LS regression to those 52 data pairs, with four points culled, yielded a model with an MNR inter-
cept and slope of (29.90 6 0.34, 3.40 6 0.19), with a correlation coefficient of 0.93 (red line in Figure 6). This
model lies within the error bounds of the model including those two points given above.

A test of how well this MNR approach is performing is to examine the prediction of the Arrhenius preexpo-
nent component given the activation enthalpy. For activation enthalpies of 3.07 and 4.78, then the regres-
sion without the two values, i.e., (29.90 6 0.34, 3.40 6 0.19), yields a prediction of the base-10 logarithms of
the preexponent components of 0.59 6 0.92 and 6.53 6 1.83, respectively, compared to the experimentally
derived (nonrobust) results of 21.1 6 0.6 and 3.3 6 0.4, respectively. Both of these prediction estimates lie
less than two sigma error estimates away from the derived values. The quality of future statistical predic-
tions will improve as more data are analyzed and added to the ensemble.

3. Individual MNR Intercepts and Slopes

When the MNR regression models for the six individual mineral groupings for which sufficient experimental
data exist (olivine, pyroxenes, rutile, garnet, quartz, and hydrous minerals; amphibole excluded as only three
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points fit by the regression) are plotted on a slope-intercept diagram, they are not random, but remarkably
fall on a linear array (Figure 6) of the form:

a 5 a 1 bb ; (5)

where a and b are the MNR intercept and gradient of equation (2). Not only do the individual minerals fall
on a line, but also sets and subsets do as well, including the MNR estimates of Zhao and Zheng [2007] for
hydrogen diffusion in all minerals. Note that the MNR estimates of Brady and Cherniak [2010] do not fall on
this regression line, as those authors considered diffusion of all species except hydrogen in single minerals
so the departure of their MNR values is not surprising. Those Brady and Cherniak [2010] points are included
to firmly establish the argument that one cannot aggregate all diffusing species nor can one aggregate dif-
fusion of one species in all minerals but must consider the diffusing species and minerals all independently.

Fitting the six MNR data for the individual mineral sets (olivine, pyroxenes, rutile, garnet, quartz, and
hydrous minerals), listed in Table 1 and shown in Figure 7 with a (nonrobust) weighted Fasano-Vio regres-
sion yields:

a524:02 ð60:50Þ–1:73 ð60:09Þb

(on a log-10 scale rather than a natural logarithm scale), with a very high correlation coefficient of 20.995.
Thus, for hydrogen diffusion in all minerals:

a529:26 ð61:2Þ eV 21 and b523:98 ð60:21Þ eV 21:

This is a remarkable—and totally unexpected—result. The six mineral sets were all analyzed and regressed
independently to derive their MNR intercepts and slope. Yet when all six are plotted they fall on a linear
array with an astonishingly high correlation coefficient of 0.98.

Note that the amphibole point, although not included in the regression, falls only 2r away from the regres-
sion line.
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Performing a regression on the MNR models from five mineral sets that comprise selected data (olivine,
pyroxenes, rutile, garnet, and quartz; MNR estimates in italics in Table 1) yields an FV regression model of:

a5–4:44 ð60:84Þ–1:63 ð60:17Þ b

with a correlation coefficient of 20.984 (red dashed line, Figure 7). This model lies well within the regression
model for the robust MNR parameters. For these five data, one must be wary of the regression as the quartz
point (218.9, 8.83) potentially acts as a leverage point and may have an unduly large influence on the
regression estimates. However, an LTS FV LS regression culls instead the rutile value and the remaining four
points yield a model of

a524:96 ð60:23Þ–1:59 ð60:04Þb

with a correlation coefficient of 20.999, which is statistically the same as the prior model.

4. Discussion

Arrhenius parameters for hydrogen diffusion in Earth’s crustal and upper mantle minerals exhibit strong
adherence to the Meyer-Neldel Rule (MNR), but with different MNR intercepts and gradients for each min-
eral. That they do this provides a powerful tool for assessing consistency between the derived activation
energy and preexponent component and aids identification of outliers.

One example of application of the MNR is to refine the error associated with the preexponent D0. The Arrhe-
nius estimates along two crystallographic axes for the diopside sample studied by Sundvall et al. [2009] have
activation energies of 2331 6 50 kJ/mol (23.43 6 0.52 eV, [010] axis) and 2312 6 55 kJ/mol (23.23 6 0.57
eV, [100] axis), and preexponents of D0 5 100.962.3 m2/s ([010]) and 100.562.4 m2/s ([100]). The points are shown
in Figure 6 (black points with error bars) and in Figure 8 (red points with error bars), and the errors lie within
the 68% confidence bounds (black dashed lines) of the linear regression (black line) so are compatible. For
the pyroxene data, the confidence bounds are wide as there are so few data. If all mantle data are considered
however (Figure 6), then the errors on the Arrhenius estimates of Sundvall et al. [2009] (black points with error
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bars) are clearly far too large given the 68% confidence bounds. The 68% confidence bounds for those points
on the preexponent are D0 5 100.961.0 m2/s ([010]) and 100.560.9 m2/s ([100]).

There are statistically two groups of MNR intercepts and gradients for the bulk of the minerals studied, with
garnet being an outlier not belonging to either set. One set comprises nominally anhydrous minerals
(NAMs) from the upper mantle, and the other set comprises hydrous and crustal minerals. Why should there
be two main sets of MNR intercepts and gradients?

One consideration could be the hydrous and anhydrous state of the minerals, with anhydrous minerals fall-
ing in the ‘‘mantle’’ cluster and hydrous minerals falling in the ‘‘crust’’ cluster. In support of this conjecture,
Lubianiker and Balberg [1997] observed two Meyer-Neldel rules for DC conduction in porous silicon for the
same temperature range, attributing one to extended-states transport and the other to thermally activated
hopping. The former resembles that found in hydrogenated amorphous silicon, so the conduction is domi-
nantly ionic transport, whereas for the latter conduction is by electronic transport.

An alternative possible insight comes from consideration of the experimental results of proton conduction
in lanthanum ortho-niobiate (LaNbO4) by Solis and Serra [2011]. Proton conduction in a material is directly
relation to hydrogen diffusion in that material through the Nernst-Einstein equation; it was consideration of
hydrogen diffusion rates in mantle materials that led Karato [1990] to suggest a quarter of a century ago
that observations of enhanced electrical conductivity in the mantle may be due to proton conduction. (The
very difficult experiments have been performed by various laboratories since the mid-2000s, and, although
there is significant disagreement between the laboratories [see Jones et al., 2012 for a discussion of the vari-
ous observations], all are consistent in showing that proton conduction is highly significant and increases
electrical conductivity by orders of magnitude.) Solis and Serra [2011] showed that lanthanum ortho-
niobiate has two distinct MNR intercepts and gradients, a low temperature pair and a high temperature
pair, and that the two temperature ranges correspond to two different crystal structures. At low tempera-
tures below 550�C, lanthanum ortho-niobiate is in a monoclinic (fergusonite-type) phase, whereas at high
temperatures above 550�C, lanthanum ortho-niobiate is in a tetragonal (scheelite-type) phase.

We note that for the mantle minerals, minerals in the olivine group crystallize in the orthorhombic system,
pyroxenes are both orthorhombic (enstatite, orthopyroxene) and monoclinic (clinopyroxene, diopside), and
rutile has a tetragonal unit cell. For the crustal minerals, quartz has a triagonal crystal structure, feldspars
are monoclinic or triclinic, and amphibole can be monoclinic and orthorhombic. Garnets are most often
found in the dodecahedral crystal habit. Thus, if crystal structure is significant, then the pyroxenes should

4321

E (eV)
-8

-6

-4

-2

0

2

Lo
g 10

(D
0 [m

2 /s
])

Orthorhombic pyroxenes
Monoclinic pyroxenes
LTS FV LS ALL
LTS FV LS Ortho
LTS FV LS Mono
68% C.I. on ALL

Figure 8. Regressions on pyroxene sets. Black line: All 15 points; blue points and line: four orthorhombic crystal points; red points and line:
11 monoclinic points. Black dashed lines are the 68% confidence intervals on the linear regression of all 15 data. The data with error bars
are those of Sundvall et al. [2009].

Geochemistry, Geophysics, Geosystems 10.1002/2014GC005261

JONES VC 2014. American Geophysical Union. All Rights Reserved. 13



fall into two separate sets, one for the orthorhombic set (four values, blue points in Figure 8) and another
for the monoclinic set (11 values, red points in Figure 8).

LTS FV regression models of the two individual pyroxene sets (orthorhombic and monoclinic, identified in
supporting information Table S1) and the combined set are listed in Table 1 and are shown in Figure 8. For
the orthorhombic set, one point is culled (2.21, 21.74) and the other three fit a line with MNR intercept and
slope of 214.7 6 0.83 and 4.86 6 0.35, respectively, with an excellent correlation coefficient of 0.997. For
the monoclinic set, two points are culled and the best-fit FV regression to the remaining nine data has an
intercept and slope of 210.2 6 10.79 and 3.24 6 0.61, respectively, with a slightly lower correlation coeffi-
cient of 0.955. These two models are shown in Figure 7 (upward and downward pointing magenta triangles)
and are distinctly different from each other with a two sample t statistic of 9.8, implying that one can reject
the hypothesis that they come from the same process at greater than a 99% level of confidence. Note that
the MNR slope and intercept for the monoclinic set (diopside) falls within the bounds of the other mantle
minerals (Figure 6), whereas for the orthorhombic set (enstatite, orthopyroxene) the slope and intercept are
closer to that for garnet (Figure 6). However, one should be very circumspect accepting this latter result,
given the very small sample of only three points fit for the orthorhombic set.

5. Conclusions

There is no doubt that the Meyer-Neldel compensation rule (MNR) is not universally accepted, with arguably
its biggest objection being the lack of an agreed physical explanation of the phenomenon. However, more
and more cases are being reported in the Solid-State Physics community of diffusion by different species in
different materials adhering to the MNR. In the geosciences the MNR is not well known, and even less uti-
lized, and one purpose of this paper is to demonstrate its applicability.

The MNR is a powerful tool for calibrating and verifying determinations of the Arrhenius preexponent term
and activation energy term fitting experimental data. As stated by Brady and Cherniak [2010] in their exami-
nation of adherence to the MNR by diffusion of various species in various minerals: ‘‘However, the use of
compensation relations to help identify ‘‘outliers’’ or unusual,’’ and therefore suspect (or very interesting!),
diffusion data is quite reasonable’’. We agree with that position, and have employed statistical methods to
identify the outliers. As an exemplar of this, we purposely included the grain boundary diffusion point of
Demouchy [2010] in the olivine database, and found that it was always the first point to be culled by the
LTS FV LS regression, regardless of the subset of olivine data that was chosen.

The MNR has been demonstrated to be valid for diffusion in minerals by other authors previously, but here
we examine each mineral independently for only hydrogen diffusion, and derive statistically robust esti-
mates of their distinct MNR gradients and intercepts based on the available data sets for each individual
crustal and upper mantle mineral. The data analyzed, listed in supporting information Table S1, are effective
diffusivities and are considered to be primarily reporting lattice diffusion rather than interstitial diffusion.
However, if there is a mixing of the two, then given that so few data are culled in the LTS FV LS regression
iterations, this would suggest that lattice and interstitial diffusion of hydrogen have the same MNR slopes
and intercepts for each mineral. This may not hold for all diffusing species.

We also undertook nonrobust regressions of data that were carefully selected. The selection process, while
based on objective grounds, is nevertheless subjective and is prone to user bias; some people will include
different data and exclude others. However, satisfyingly the objective robust regression estimates are the
same, to within error, as those determined from nonrobust culling regression of the selected data, with the
sole exception of rutile.

We show unequivocally that for the minerals studied they fall into two clusters and one anomalous outlier,
namely garnet. The clusters are of olivine, pyroxene, rutile, and other NAMs, in what is termed herein the
‘‘mantle group,’’ and quartz, feldspar, amphibole, and hydroxyl silicates in the ‘‘crustal group.’’ The isokinetic
temperatures of the mantle group is of the order of that at the base of the lithosphere and the asthenosphere,
around 1200–1600�C, whereas for the crustal group it is at a temperature commonly found in the midcrust,
around 300–400�C. The isokinetic temperature for garnet lies in the midlithosphere at around 800�C.

The reason for the two distinct clusters could be due to whether the mineral is hydrous or anhydrous. Alter-
natively, the crystal lattice structure could be significant. Pyroxenes can be statistically divided into two
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subgroups, one for orthorhombic lattice, namely enstatite and orthopyroxene, and the other for monoclinic
lattice, diopside. The two subgroups display distinctly different Arrhenius parameters, but the sample sizes
of the sets are small, particularly for the orthorhombic set (only three points!), and far more data need to be
acquired to substantiate, or reject, this conclusion.

Most strikingly, when these individual MNR gradients and intercepts are plotted for the six minerals studied,
they themselves fall on a straight line, with the intercept and gradient of the MNR parameters being
a 5 29.26 (61.2) eV21 and b 5 23.98 (60.21) eV21. The correlation coefficient for that regression is an
astonishingly high 0.98. This cannot be a coincidence or due to inappropriate data analyses. One can dis-
cuss and debate the merits of including or excluding some of the data in the individual analyses, but as
exemplified by Figure 3b such discussion is secondary in that the ensemble MNR estimates are robust, and
the overarching result shown here is that these robust MNR estimates themselves fall on a linear array. This
was confirmed through regression of the user-defined selected data sets.

The implication of this result is the generalization of the MNR: for a single diffusing species in a single min-
eral, those samples that have large activation barriers (large E) to diffusion compensate by increasing their
attempts to diffuse (large preexponent). For a single diffusing species in all minerals, as in the case of hydro-
gen studied here, those minerals that have large average activation barriers compensate equally with
increased diffusion attempts. Thus, the compensation rule is itself compensated.

Whether this phenomenon is observed for other Arrhenian processes needs to be tested.
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