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Summary. An interpretation of the geomagnetic inductive response function, 
C( W, 0), observed at Kiruna in northern Sweden, is herein undertaken. The 
bounds of acceptable solutions are initially discovered by a Monte-Carlo 
random search procedure, and the best-fitting solutions are examined by the 
application of linear theory to the problem. The data are shown to have a 
higher degree of internal consistency than that described by the estimated 
variances of each datum. A further Monte-Carlo inversion of the variance­
reduced data set gives solutions with well defined model parameters. 

The two major features of the models are: (1) a small, or non-existent, 
electrical conductivity variation across the seismic Moho boundary, and (2) 
the unequivocal existence of an electrical asthenosphere, under the Fenno­
scandian shield, beginning at a depth of between 155-185 km, and of 60 km 
minimum thickness. Both of these observations have seismic counterparts. 

Finally, possible mantle temperature profiles are deduced which depend on 
the assumptions and laboratory data employed. 

Introduction 

The electrical crust-mantle structure of the continents and oceans may play a decisive role 
in helping to understand the tectonic processes that have occurred, or are, at present, 
occurring. Knowledge of the electrical resistivity with depth structure beneath a measuring 
point may lead to an interpretation of, for example, the probable conditions at certain 
depths, the possible rock candidates responsible for the observations, and a mantle geotherm 
for the region etc. These factors are all of sigttificant importance when attempting to build a 
suitable tectonic model of a region, and the interaction between the region and the other 
environments with which it is juxtaposed. 

However, the geomagnetic induction worker has, at his disposal, some response function 
describing the variation of the observations with frequency, which he desires to interpret 
into a conductivity model believed to be responsible for the observations. But modelling of 
data may suffer from the effects of bias due to either oversimplification, or overcomplica­
tion, of the problem, or simply lack of sufficient information. Another point of extreme 
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relevance is: how valid are the assumptions that are made when deriving a model, or models, 
from data. 

This latter point was dealt with, for the data set under consideration, in a previous 
publication (Jones 1980), in which it was shown conclusively that an interpretation of the 
data in terms of a model where conductivity varies with depth alone is fully justifiable. 
Part of this work addresses the first point detailed above. 

The first part of the paper, Section 2, describes how acceptable models were discovered 
utilizing a refined version of Jones & Hutton's (1979) Monte-Carlo inversion procedure. In 
the second part, Section 3, the best- fitting 3- and 4-layer solutions discovered are examined, 
by application of a singular value decomposition (SVD) of the system matrix, for parameter 
resolution and parameter intercorrelation. The importance of a priori information is 
illustrated. The third part, Section 4, correlates the geoelectric model for the border regions 
of Fennoscandia with seismic models of the region, whilst the final part, Section 5, proposes 
a tentative mantle geotherm for the Fennoscandian shield. 

2 Data and models 

The data with which this paper is concerned were derived by applying the Horizontal Spatial 
Gradient (HSG) method (Schmucker 1970) to various time segments, or 'events', recorded 
by ten magnetometers located at, and around, Kiruna in northern Sweden (Jones 1980). 
These events were principally analysed as part of the International Magnetospheric Study 
(IMS), to which Munster University contributed by operating an array of 36 modified 
Gough-Reitzel variometers (Gough & Reitzel 1967; Kuppers & Post 1981). However, the 
large gradients observed in the horizontal magnetic fields made these events also suitable for 
geomagnetic induction studies. 

The application of the HSG technique to the 3-component magnetic variations yielded an 
estimate of the complex inductive transfer function, (;(w, 0) (Schmucker 1970; Schmucker 
& Weidelt 1975), in the period range 102-104 s. The estimate was shown to be physically 
realizable, i.e. causal, by two techniques, one involving the Fourier transformation of the 
complex conjugate of (;(w,O), i.e. C*(w,O), and the other entailing the Hilbert trans­
formation of the real part of C(w, 0). (It cannot be stressed too highly that causality is a 
necessary condition of all transfer functions, and the simple tests outlined in Jones (1980), 
or some equivalent ones, should be much more widely applied in all branches of geophysics.) 
The estimate was also displayed to be interpretable in terms of an earth conductivity model 
in which the electrical conductivity varies with depth alone, o(z), by applying validity tests 
both in the frequency domain (Weidelt 1972) and time domain (Weidelt, private communi­
cation, detailed in Jones 1980). 

The inductive transfer function, C(w, k), is representable as magnetotelluric (MT) 
apparent resistivity, Pa , and phase, rp, reponses by the relationships 

Pa (w, k) = W!J.o IC(w, k) 12 

-1 (Re [C(w,k))) 
rp(w,k)=-tan Im [C(w,k)] 

where w is the frequency of interest, and k is the Price wavenumber (Price 1962) of the 
source. 

The thus determined Pa (T) and rp (T) (henceforth a uniform external field is assumed, 
i.e. k = 0), together with their 80 per cent confidence intervals, derived as described in Jones 
(1980), are illustrated in Fig. 1. 

These data were inverted to acceptable geoelectric models by a refined version of the 
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Figure 1. The fit of the best 3-layer (numbered '1') and best 4-layer (numbered '2') models (detailed in 
Table 1) to the derived inductive response function, expressed in terms of apparent resistivity and phase, 
with 80 per cent confidence intervals as shown. 

Monte-Carlo technique (Jones 1977; Jones & Hutton 1979) with the assumptions of a three­
layered earth, and that the top layer had a resistivity of 104 S1m. This latter constraint was 
taken from the audiomagnetotelluric observations ofWesterlund (1972) made in the vicinity 
of Kiruna, and the former from the essential nature of the derived response. As discussed in 
Jones & Hutton (1979), it is axiomatic in geophysical data interpretation to find the 
simplest model - or models - that satisfies the observed response, unless any a priori 
information is available. In this respect, three-layer geoelectric models can be found that 
well describe the data. Hence, the first inversion was undertaken with one constant, i.e. 
Pl=104 S1m, and four variables, P2, P3, hI and h2' i.e. the resistivities of the second and 
third layers, and the thickness of the first and second layers. The four variables were only 
constrained to be physically reasonable, i.e. 1 S1m < P2 and P3 < lOs rlm and 0 < h I and 
h2• The refined version of the Monte-Carlo search procedure operates initially as that 
described in Jones & Hutton (1979), but restricts the search space of the random choice of 
parameters once a certain minimum number of models have been found. Hence, it can be 
regarded as similar to the Hedgehog procedure (Keilis-Borok & Yanovskaya 1967), with the 
important difference that degeneracy of the solution space is permitted, Le. a single closed 
set of solutions is not an essential pre-requisite of the data and globally distinct solutions are 
discovered. 

Using the procedure with the starting model as given in Jones (1980), PI=104 rlm, P2= 
12SS1m, P3=3S1m, h l =30km and h2=llOkm, those models discovered, out of 6000 
tested, which were acceptable to all 18 confidence intervals (nine for Pa and nine for </1), had 
p-d (resistivity-depth) profiles as shown in Fig. 2. The best fitting model, and the standard 
deviations of the acceptable values of each of the parameters, are listed in Table 1, and the 
theoretical response of this best model is illustrated in Fig. 1. As can be seen in Fig. 2, 
log(P2), the logarithm of the second layer, is the best estimated parameter from the data 
set, and h2 the worst estimated. 

For reasons which will be discussed in Section 4, a second Monte-Carlo inversion of the 
data set was undertaken with the assumptions of a four-layered earth, PI = 104 S1m (as 
previous) and h 1+h 2 =46km, i.e. the depth to the interface between the second and third 
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Figure 2. The resistivity~depth profiles of those 3-layer models, discovered by the Monte-Carlo random 
search procedure, that are acceptable to all 18 80 per cent confidence intervals of the data, as illustrated 
in Fig. 1. The final bounds of the search procedure are indicated by the p~d profiles marked L for lower 
bound, and U for upper bound. 

layers. Thus, there were five variables, P2, P3, P4, hl-h2 and h 3. Of the 6000 models investi­
gated, those that were acceptable to all 18 confidence intervals had p-d profiles as 
illustrated in Fig. 3. The best fitting 4-layer model discovered is detailed in Table 1, as are 
the standard deviations of the accepted values of the model parameters, and its theoretical 
response is shown in Fig. 1. 

3 Model parameter correlations and reliability 

3.1 THEORY 

In inversion studies, it is of paramount importance to discover four features described by the 
data set under consideration. These are: (1) the 'best' (defined in some manner) fitting 
solution; (2) the degree of non-uniqueness of that solution; (3) the correlation between the 
model parameters of that solution; and (4) the ability of the data to resolve the model 
parameters of that solution, i.e. in essence the reliability of the derived model parameters. It 
is obvious that (4) is intimately connected to (2). Unfortunately, in the majority of 
geophysical interpretations of data, only (1) is attempted. 

Points (1) and (2) have been covered in the previous section where best-fitting (as defined 
by a minimum value of t/J given by equation (1) of lones & Hutton 1979) 3- and 4-layer 
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Table 1. Parameters of the best fitting 3- and 4-layer models to the data illustrated in Fig. 1. Figures in 
brackets refer to ± 1 standard deviation from the means of the acceptable model parameters, where a 
logarithmic parameter distribution has been assumed, Le. 68 per cent of acceptable parameters were 
within the bounds specified in brackets. 

3-layer 
model 

4-layer 
model 

Crust 

One layer 

P = 10'!"lm (fixed) 
h = 27.3km (22.3-28.6) 
d = ash 

Two layers 

P, = 104 !"lm (fixed) 
h, = 7.lkm (5.0-11.8) 
dJ=ash J 

P, = 360!"lm (240-450) 
h, = 38.9 km (33.0-42.1) 
d 2 = 46 km (fixed) 

Mantle 

P = 103!"lm (92.7-113.6) 
h = 133.7km (123.3-153.5) 
d = 161.0 km (147.6-180.0) 

P = 77!"lm (72.1-91.6) 
h = 127km (111.3-143.2) 
d = 173km (157.5-189.0) 

Asthenosphere 

P = 6.4!"lm (2.9-9.6) 

P = 5.1!"lm (2.3-7.8) 

models were discovered (detailed in Table 1), and their non-uniquenesses displayed (Figs 2 
and 3). To accomplish points (3) and (4), certain aspects of linear theory have been 
employed here. For a more complete exposition of the following theory, the reader is 
referred to, for example, Wig gins (1972) and Inman (1975). 
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Figure 3. The resistivity profiles of those 4-layer models that are acceptable to all 18 80 per cent con­
fidence intervals. The final bounds of the search procedure are again illustrated by Land U. 
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The system matrix A, as given by 

fie=A·fip (1) 

where fip is an n-length vector describing small order variations in the n model parameters P, 
fie is an m-length vector describing the changes introduced on the m observations of the 
variations ~P, and A, an m x n matrix relating ~e to ~p (note on notation, capital letters 
in bold-face type refer to matrices, small letters in bold-face type to vectors), represents a 
first-order Taylor series linearization of the functional relationship between the model para­
meters, p, and the calculated values, e. Matrix A consists of m rows, each row corresponding 
to the sensitivity of one observation to a variation in each of the n model parameters, and n 
columns, each column corresponding to the sensitivity of all m observations to one 
particular model parameter. 

Because some observations are usually considered to be better estimated than others, it 
is essential that the system matrix be weighted to reflect the certainty of the individual 
observations. The weighting matrix commonly used is that given by the variance-co variance 
matrix of the data divided by the problem variance, i.e. S = V /02 where Vu = E [~i~i] , the 
expectation value of the covariance between the error in the ith observation and that in the 
jth observation, and 0

2 is the problem variance. The transformed system matrix A', given by 
A' = S-1/2 A, describes the relationship between the transformed observations, ~e' = S-1/2 ~e, 

all of variance 0
2

, and the model parameters, i.e. 

fie' = A' .~p. (2) 

An estimate of the problem variance for weighted least-squares problems, i.e. when the data 
do not all display the same individual variance, is given by 

_ (~e)t V-I ~e 
0

2 = (3) 
m-n 

(Hamilton 1964, p. 130; Inman 1975). 
As shown by Inman (1975), the covariance matrix of the model parameters is given by 

cov(p) = 0 2 (AtV-I Afl, (4) 

and from this the correlation matrix of the model parameters, which indicates the inter­
dependence between parameters, is derivable. The elements of the correlation matrix are 
given by 

[ ( )] 
[cov(P)];i 

cov P if = 
[cov(p)]u [cov(P)Li 

(5) 

Wiggins (1972), and recently Edwards, Bailey & Garland (1980), detailed how the 
problem described by equation (2) may be reparameterized by a singular valve decom­
position (SVD) of matrix A'. Assuming that there exist k independent equations in (2), then 
matrix A' has rank k and can be facto red as 

A' = U J\. V t 

mxn mxk kxk kxn 
(6) 

where U contains k eigenvectors Ui of length m associated with the observations, J\. is a 
diagonal matrix of k eigenvalues, Ai, V contains k eigenvectors Vi of length n associated with 
the parameters, and k is the number of degrees of freedom, given by 

k = L-Af/(A7 + 0 2
). 

(Wiggins 1972). 
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Reparameterizing the data, I1c', and the model parameters, p, by matrices U and Y gives 

c* = ut S-1I2 c 

as eigendata, and 

p* = yt P 

as eigenparameters (Edwards et al. 1980). 

(7) 

(8) 

If k < n, then the complexity of the model cannot be resolved by the data set used, and 
hence either simpler models must be sought, or a priori information must be included. 

The variance of each eigenparameter is given by 

var(p!) = [aAdO,r + a2)F 
and the resolution matrix by 

R= ~ [AJJ(Al + a 2
)] VjvJ 

j 

3.2 APPLICATION 

(9) 

(10) 

The available data set consists of estimates of apparent resistivity and phase, and their 
associated variances, at nine periods. Although it is weIl known that apparent resistivity and 
phase are not independent, and in fact for theoretical data the phase is related to the 
apparent resistivity by Hilbert transformation (Weidelt 1972; Fischer & Schnegg 1980) 
by including both data the space of acceptable solutions is reduced to that given by the 
overlap of the two individual spaces of acceptable solutions, i.e. 

T=Rnp, 

where T is the set of solutions acceptable to both data, R is the set of solutions acceptable to 
the resistivity information, and P is the set of solutions acceptable to the phase information. 

If the sets do not overlap, i.e. R np=O (null set), then PaCT) and </J(T) are incompatible, 
or their variances have been underestimated, and no common model exists. If one set is 
totaIly contained by the other, i.e. Rep or PeR, then the other set is redundant. 

As was shown in Jones (1980), the real and imaginary parts of the estimated C( w, 0) are 
fully compatible, and hence, because the Earth is a minimum phase system, Pa and rp 
illustrated in Fig. I are also compatible. 

The data used for the study were not Pa and </> values, but 10glOPa and </> values, because 
Pa is approximately lognormally distributed, not normally distributed (Bentley 1973), for rp 
the difference between a normal distribution and its closest equivalents for data distributed 
on a circle, i.e. the wrapped normal and the von Mises distributions, was ignored (see Mardia 
1972 pp. 68-69). In a similar manner, the model parameters were not the resistivities Pi. 

and thicknesses, hi, of the model, but P; =IOglO(pD and h; = 2log lO (hD, because, as has been 
stressed by Weidelt (1972), Loewenthal (1975) and others, the natural scales of the layer 
parameters are logarithmic. The layer parameter hi is twice the logarithm of hi because of 
equal penetration depth arguments. If a layer of initial thickness h is halved in size, then its 
resistivity must be reduced to one-quarter, not one-half, of the initial value in order that the 
fields are attenuated to the same degree on passing through it. This is a direct consequence 
of the fact that the skin depth of a medium is not proportional to the resitivity of the 
medium, but to its square root. 

The variance-co variance matrix Y was assumed to be diagonal as the estimations of pa 
and rp at different periods were not related, and hence their errors should not correlate. For 
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Table 2. Upper triangle: correlation matrix of the parameters of the 
3-layer model specified in Table 1. Lower triangle: correlation matrix 
of the same model as for Table 2, but assuming that p', is a problem 
constant and not a problem variable. 

p', P~ P'3 h' I h' 2 

p', 100 59 -23 -94 84 

P~ 100 16 -81 46 
P'3 38 100 13 -59 
h' , -90 -25 100 -84 
h; -8 -74 -10 100 

apparent resistivity, the variances were detennined on a logarithmic scale to be in accord with 
the assumption that pa is lognormal\y distributed. 

For the three-layer model detailed in Table 1, the SVD eigenvectors, Vi, and their 
corresponding eigenvalues, Ai are illustrated in Fig. 4, left side, together with the diagonal of 
the resolution matrix, given by equation (lO), for the system matrix containing both 
10glO(Pa) and rf> information. For the data and the model used, the best estimated parameter 
is hi!. The fifth eigenvector has an eigenvalue of 0.02, which indicates that the data can­
not resolve that eigenparameter, and, as can be seen in Fig. 4, left side, the fifth eigen­
vector comprises of almost solely h; = 210g lO (h 2). The correlation matrix (Table 2, upper 

~.lo~2 r-Resolution 

:r III1 

I I I I I 
Pi pi PJ h, n2 

Figure 4. Left side: an SVD analysis of the best fitting 3-layer model detailed in Table 1. The eigen­
vectors are given in decreasing eigenvalue order, where the eigenvalues are as listed. The model parameters 
are in order of all layer resistivity parameters followed by layer thickness parameters, i.e. p'" p;, P~, h'l 
and h;. The main diagonal of the resolution matrix is illustrated at the bottom of the column, and the 
problem variance is given at the base of the column. Right side: an SVD analysis of the same model as for 
left side, but assuming that P'I is a problem constant and not a problem variable. 
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triangle) indicates, however, that although h; cannot be resolved, its value has a great 
influence on the other parameters, especially P~ and h'l' Hence, without any a priori infor­
mation, the depth to the second interface is very badly determined. In the Monte-Carlo 
inversion undertaken in Section 2, PI was not considered a variable of the problem, but a 
constant with the value of 104 r2m. Repeating an SVD analysis of the data and the model, 
but assuming P~ is an a priori fact, therefore non-variable, results in the four eigenvectors 
as shown in Fig. 4, right side. From the diagonal of the resolution matrix (Fig. 4, right side, 
bottom), where 'c' denotes a problem constant, it is clear that all the other four parameters 
are well resolved. Indeed, for this problem, h; is the best resolved parameter, because eigen­
vector 1 consists of the terms (-0.14) P; + (-0.30) }/j + (-0.94) h;. Eigenparameters 2 and 3 
indicate that the two next best determined are P; and h't, whilst the least well derived is p~. 
Parameters P; and h; show the largest intercorrelation (Table 2, lower triangle), with h; 
and p~ next, the others are virtually uncorrelated. That Fig. 2 does not appear to agree 
totally with the SVD analysis (Fig. 4, right side), is due to the fact that the Monte-Carlo 
inversion was undertaken with the assumption that the problem variance was unity. As 
shown in Fig. 4, the actual problem variance is 0.055, which indicates that the internal 
consistency of the data is superior to the variances estimated. Hence it is justifiable to set 
the problem variance to 0.055 (Wiggins 1972) and repeat the Monte-Carlo inversion. This 
was not undertaken for the 3-layer model. 

For the 4-layer best fitting model detailed in Table 1, an SVD analysis gave the eigen­
information illustrated in Fig. 5, and correlation matrices as given in Table 3. Fig. 5, left 
side, and Table 3, upper triangle are pertinent to the problem where all seven parameters 
(p;, p;, p~, p~, h'l, h;, h~) are assumed to be variables. The sixth and seventh eigenvectors 
and the resolution matrix diagonal (Fig. 5, left side), infer that the value of P'I cannot be 
resolved from the data set, that p; is badly resolved, and that h'l is not well resolved. The 
best determined parameters is h; (eigenvectors 1 and 2). The correlation matrix (Table 3, 
upper triangle) infers that the parameters are highly interdependent. With the a priori 
information that PI = 104 r2m and hi +h2 = 46 km, an SVD analysis of the data with five 
problem variables, where h~ and h~ now strictly refer to the depths to the bottom of the 
layers, i.e. d; and d~, yields the eigensolutions illustrated in Fig. 5, right side, with the 
associated parameter correlation matrix given in Table 3, lower triangle. For the problem, 
all parameters, with the exception of p~, are resolvable, and p~ is quite well resolved (R 44 = 
0.72). The best determined parameters are h'l (strictly d'l) and p~. The small value of 
problem variance, 0.036, again indicates that the data have a higher degree of internal 
consistency than is inferred by the estimated variances. Repeating the Monte-Carlo inversion 
of the data but for confidence intervals which are reduced by a factor of 0.316, i.e. the 

Table 3. Upper triangle: as for Table 2 (upper triangle) for the 4-layer model detailed in Table 1. Lower 
triangle: correlation matrix for the same model as Table 3 (upper triangle), but assuming that p', and d;, 
where d; = 210g,odi (depth to base of ith layer), are problem constants and not problem variables. Here 
h', and h; imply d; and d;. 

p', p; p~ p~ h' , h' 2 h' 
3 

p; 100 -22 -30 -82 -01 38 -16 
p; 100 93 21 -97 75 99 
p; -82 100 35 -86 54 93 
p~ -21 36 100 -02 -33 13 
h' , -98 72 18 100 -88 -97 
h' 

2 100 75 
h' 

3 34 -50 -80 -29 100 
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pi Pi p', 1", h', t>; hi 

Figure 5. Left side: as for Fig, 4 (left side) for the 4-layer model detailed in Table 1. Right side: an SVD 
analysis of the same model as left side, but assuming that p', and d;=210g,o(h,+h 2 ) are problem 
constants and not problem variables. Here h; and h~ refer to the depths of the bottom of the layers, i.e. 
d', and d;, and not the thicknesses of the layers. 

square root of 0.10, yielded models, fitting to all 18 95 per cent confidence intervals, within 
the bounds illustrated in Fig. 6. Those models accepted, out of 10 000 tested, had 
parameters with standard deviations shown by the error bars in the figure, and the dashed line 
is the p-d profile of the best fitting model, as detailed in Table 1. Fig. 6 agrees with the 
SVD analysis as both infer that P'3 and d~ are very well estimated, whilst p~ is worst 
estimated. The correlation matrix (Table 3, lower triangle) shows that d~ is highly correlated 
in an inverse manner to p;, which implies that equivalent models may be found by increasing 
d 1 and simultaneously decreasing P2' This is illustrated by the best fitting model which 
displays virtually the minimum permitted value of d 1 and close to the maximum permitted 
value of P2. 

4 Implications to crust-mantle structure 

The initial inversion of the data was undertaken to discover which 3-layer models, with PI = 
104 Urn, fit the data set. Examples of such acceptable models are illustrated in Fig. 2, and 
the best fitting solution discovered is given in Table 1. All models display a mono tonically 
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Figure 6. Solid lines: the bounds of those models acceptable to aUl8 95 per cent confidence intervals of 
the reduced-variance data set. Dashed line: best fitting 4-layer model. Error bars: the ranges of 68 per 
cent of the acceptable model parameters. 

increasing conductivity with depth, with a 'crust' of 104 Dm which is 20-30 km thick, on a 
'mantle' of 85 -145 Dm. Then, at a badly estimated depth of 130-190 km is a highly 
conducting layer of2-15 Dm. 

In a recent paper however, Bungum, Pirhonen & Husebye (1980) derived a crustal thick­
ness for the whole of the northern region of Fennoscandia of 45-47 km from seismic 
evidence. The most accurately determined parameter of the teclmique used (the spectral 
ratio method) is the depth to the Moho, crustal layering does not strongly affect this 
parameter. For the Kiruna station, Bungum et al. estimated a Moho depth of 45.5 ± 0.6 km 
standard deviation. In order to discover if this depth was compatible with the geomagnetic 
observations, the second Monte-Carlo inversion was undertaken, as described in Section 2, 
with an intracrustal discontinuity, of variable depth, to correspond to a Conrad seismic 
discontinuity. The inversion was constrained to give models with an interface at 46 km. 

From the results of the inversion of the reduced variance data set (see Section 3.2), the 
acceptable models of which had bounds as illustrated in Fig. 6, five important points are noted: 

(1) an intracrustal geoelectric boundary occurs at a depth of 6.5-16 km; 
(2) the lower crustallayer has an intermediate resistivity, P2 = 215 -400 Dm; 
(3) there is not a large electrical resistivity contrast across the Moho; 
(4) the upper mantle is moderately conductive, with P3 = 70-95 Dm; and 
(5) there is a transition to a highly conducting layer, of P4=2.5-8.l Dm, at a depth of 

153-187 km. 

Dealing with these points in order: 

Point 1 

The inferred intracrustal geoelectric boundary corresponds reasonably well with current best 
estimates of the thickness of the upper crust, from seismic studies, of 16 ± 4km (Husebye 
1980, private communication). Hence it may be the electrical equivalent of the seismic 
Conrad discontinuity. 
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Point 2 

A lower crustal layer exhibiting such intermediate resistivities under a Precambrian shield 
region was shown by J ones (1981) to have counterparts on the eastern and southern edges of 
the Canadian shield. The layer is often correlatable with a seismic layer of transitional com­
pressional wave velocity Vp = 6.8-7.2 km S-I, and is of the Type II class as defined by 
Jones (1981). From an examination of the possible candidates for this layer, it was 
concluded that hydrous conditions must prevail and that an amphibolite displays the 
req uired characteristics. 

Point 3 

The electrical resistivity contrast across the Moho is, on a logarithmic scale, only a factor of 
about 1.2. Although an electrical boundary and an acoustic boundary are sometimes at the 
same depth (see, for example, Hutton, Ingham & Mbipom 1980), they are often not. For 
northern Sweden, Theilen & Meissner (1979) doubt that there is even a strong acoustic 
interface at the Moho - 'This fact (of weak P mP arrivals) can well be explained by a positive 
velocity gradient within the crust leading to a small or even non-existent velocity step at the 
Moho.' 

Point 4 

Such a relatively conducting upper mantle under Precambrian regions is rather uncommon 
(see, for example, Jones 1981, figs 1 and 2), but an upper mantle of 40-60 Dm as a global 
figure was interpreted by Schmucker (1974, reported in Haak 1980) for continental areas, 
from an analysis of Sq- and Dst-variations. 

Point 5 

The transition to a highly conducting layer of p = 2.5-8.1 Dm at a depth of 153-187 km is 
well correlated with the depth of a low-velocity layer observed under the Baltic shield. This 
Iow compressional wave velocity layer, L VpL, has been interpreted as existing between 170-
190km by Cassell & Fuchs (1979), between 150-250km by Nolet (1977), and between 
150-220 km by Given & Helmberger (1980). These results are to be contrasted by a figure 
of 250 km for the lithospheric thickness of the Baltic shield, as derived by Sacks, Snoke & 
Husebye (1979). The heat flow in northern Sweden is 40 ± 3 (standard deviation) mW m-2 

(Eriksson & Malmqvist 1979, ignoring the anomalously high Al measurement), which, 
according to Chapman & Pollack (1977), should infer a Iithosphere of greater than 200 km 
thickness. Exceptions to this rule have been illustrated by Adam (1980), and are principally 
the Canadian shield (Wickens 1971; Wickens & Buchbinder 1980) and south- central USA 
(Biswas & Knopoff 1974), both of which exhibit low heat flow (q ~ 40 mW m-2

) with 
pronounced shear wave low-velocity layers in the upper mantle, L VsL 's, but without 
compressional wave low-velocity layers, LVpL's. An empirical relationship given by Adam 
(1978), for the depth to the Intermediate Conducting Layer (ICL), or asthenosphere, is 
hrcL = 155 q -1. 46, where q is the heat flow in heat flow units. Substituting the figure for 
northern Sweden of q =0.96 HFU, gives hrCL = 164km, which agrees with the majority of 
the seismic investigations and also with the geomagnetic data. In contrast, an interpretation 
of the generalized curve for the East European platform shows no 'well-developed' electrical 
asthenosphere (Vanyan et al. 1977), where a 'well-developed' asthenosphere is defined by 
Vanyan et al. (1977) as exhibiting a conductance of greater than 1000 S, i.e. thickness x con­
ductivity. The asthenosphere derived from this work has a minimum thickness of 60 km; any 
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thinner and its thickness would be resolvable, especially by the phase information (note: 
the comments by Vanyan et al. were made solely on the apparent resistivity information, no 
phase data were included). Hence this electrical asthenosphere is certainly 'well-developed' 
because it exhibits a minimum conductance of 12000 S (60000/S). 

5 Possible geotherm under northern Sweden 

The important role that could be played by geomagnetic studies, i.e. Geomagnetic Depth 
Soundings (GDS), Magnetotelluric investigations (MT), or application of the relatively new 
Horizontal Spatial Gradient method (HSG - see, for example, Jones 1980), in helping to 
understand the dynamic processes involved in mantle convection and magma migration 
has been stressed by many workers, most recently by Waff (1980). This is because of all 
lithological parameters that are temperature-dependent, electrical conductivity is one of the 
most sensitive to thermal variation. Thus, regional electrical conductivity profiles deduced 
from one, or more, of the above techniques, combined with laboratory data detailing the 
electrical properties of probable mantle materials at mantle temperatures (the effect of 
pressure, beyond that required to produce crack closure, is not considered to be important 
(see, for example, Duba 1976; Volarovich & Parkhomenko 1976), unless the depths are such 
that phase transitions may be involved), provide an important constraint on the mantle 
geotherm for the region. 

Considering solid olivine, the lower limit on the conductivity-temperature relationship is 
taken from the measurements of Duba, Heard & Schock (1974), whilst the actual conduc­
tivity for olivine is believed by Shankland & Waff (1977) to be no greater than ten times 
Duba et al.'s results. Taking Duba et al.'s data, and the p*-z* inversion (Schmucker 1970) 
of the geomagnetic data (illustrated in Fig. 7), yields the olivine geotherm marked DHS in 
Fig. 7. The lower limit is given by adopting Shankland & Waffs (1977) suggestion of ten 
times the conductivity relationship of Duba et al., to yield geotherm RSP x 10 in Fig. 7. 
Possible geotherms from solid ultramafic rocks are derived from Rai & Manghnani's (1978) 
studies. The lower and upper geotherms (marked 'I' and 'u') are deduced for a garnet 
lherzolite and a spinel lherzolite respectively, where the former should be more representa­
tive of a continental upper mantle and the latter of an oceanic upper mantle. These two 
are in fact also the bounds of the various rock types studied by Rai & Manghnani(l978). The 
shaded region in Fig. 7 are the bounds deduced from taking the p*-z* inversion coupled 
with Rai & Manghnani's data. 

These geotherms may be compared with published geotherms; Ringwood's continental 
geotherm (Clark & Ringwood 1964; Ringwood 1975), Tozer's continental geotherm (Tozer 
1967), Hall's Canadian shield temperature-depth relationship (Hall 1977), and Anderson's 
dry garnet lherzolite geotherm (Anderson 1980). If there is a slight partial melt, which 
should be expected in an asthenosphere, then the 'hump' on Anderson's geotherm will 
reduce slightly to a maximum value of 14S0°C. All geotherms in Fig. 7, with the exception 
of DHS, are below the dry lherzolite solidus and the dry basalt solidus (see Anderson 1980). 

The existence of the seismically observed asthenosphere requires a 1-3 per cent melt 
fraction of the rock to give the reduced seismic velocities (see, for example, Stocker & 
Gordon 1975). For a 2 per cent melt fraction at a pressure of SOkbar, an effective con­
ductivity of 0.2 S m-I (i.e. the conductivity of the highly conducting layer) infers a 
temperature of IS00°C, from the effective medium theory of Shankland & Waff (1977) as 
applied to their basalt melt conductivity and the RSP x 10 olivine conductivity data. The solid 
triangle indicates a 3 per cent melt if the more resistive DHS olivine conductivity data are used. 
A 3 per cent melt of RSP x 10 olivine at SO kbar, giving an effective conductivity of 
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Figure 7. Model: The best-fitting 4-\ayer solution, as detailed in Table 1; p*-z*: the Schmucker p*-z* 
inversion of the data; R: Ringwood's Precambrian geotherm (Clark & Ringwood 1964); T: Tozer's Pre­
cambrian geotherm (Tozer 1967); H: Hall's Canadian shield temperature-depth relationship (Hall 1977); 
A: Anderson's dry garnet Iherzolite geotherm (Anderson 1980); hydrous and anhydrous Iherzolite solidii: 
of Kushiro et al. (1968); OHS: solid dry olivine temperatures as inferred from the p*-z* inversion and 
the laboratory data of Ouba et al. (1974) at atmospheric pressure; RSP X 10: the solid dry olivine tem­
peratures as inferred from the p*-z* inversion and the upper limit conductivity-temperature relation­
ship, suggested by Shankland & Waff (1977), at atmosphere pressure; Shaded area: dry ultramafic tem­
peratures as inferred from the p*-z* inversion and the laboratory data of Rai & Manghnani (1978). The 
colder bound is for garnet Iherzolite, and the hotter bound is for spinel Iherzolite, both at atmospheric 
pressure; I: the lower bound ultramafic temperature as inferred from the best fitting model and the garnet 
Iherzolite data of Rai & Manghnani (1978), at atmospheric pressure; u: the upper bound ultramafic tem­
perature as inferred from the best fitting model and the spinel Iherzolite data of Rai & Manghnani 
(1978), at atmospheric pressure; Solid triangle: the inferred temperature of a 2 per cent melt fraction of 
RSP X 10 olivine, or a 3 per cent melt fraction of OHS olivine, at 50 kbar pressure, from the effective 
medium theory of Shankland & Waff (1977). This point may be regarded as the upper bound of the 
temperature of the asthenospheric zone under the Fennoscandian shield. 

0.2 S m-\ would infer a temperature of 142SoC. Hence, a partial melt of the order of 3 per 
cent infers a temperature value at a depth of 170 km which lies between the geotherms 
proposed by Tozer and Anderson, assuming that Shankland & Waffs effective medium theory 
is valid and that the solid conductivities given by either of the curves DHS or RSP X 10 are 
valid. 

However, if there should exist free water at these depths, then the proposed temperatures 
are well above the hydrous lherzolite solidus of Kushiro, Syono & Akimoio (1968). This 
solidus is applicable when the hydrostatic pressure equals the lithostatic pressure, and should 
this condition not be met, the true solidus will lie between the hydrous and anhydrous 
solidii indicated in Fig. 7. Too little is known of the conductivity variation with temperature 
of rocks, which can be considered to represent mantle constituents, under hydrous mantle 
conditions to be able to even estimate the effects introduced. It is possible, however, that 
under hydrous conditions the temperatures could be as low as the hydrous lherzolite solidus 
proposed by Kushiro et al. (1968). 

Conclusions 

The inversion of the C (w, 0) data from northern Sweden, as detailed in lones (1980), by a 
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refmed version of the Monte-Carlo random model parameter choice procedure (lones & 
Hutton 1979), illustrated that 3- and 4-layer models could be found which satisfied all 18 
80 per cent confidence intervals. The acceptable models, illustrated in Figs 2 and 3. all 
display a moderately resistive lower crust and upper mantle, underlain by a good conducting 
zone beginning at an ill-defmed depth of 130-190 km. 

An analysis of the system matrix of the best fitting models illustrated how important was 
the a priori knowledge given by the AMT information of Westerlund (1972), of a top layer 
of resistivity 104 D.m. This resistivity could not be resolved by the 4-layer best fitting model, 
and its introduction as a problem constant rather than a problem variable led, in both the 3-
and the 4-layer solutions, to correlation matrices exhibiting a lesser degree of model 
parameter intercorrelations. The analysis showed that the deep highly conducting layer is 
well resolved by the data, and is not an artifact of the modelling procedure used. The 
problem variances indicated that the data set have a higher internal consistency than that 
described by the estimated data variances. On reducing the data variances by a factor of 10, 
which is in fact a conservative value as the problem variance inferred a reduction by a 
factor of 20 was appropriate, those models acceptable to the variance-reduced 95 per cent 
confidence intervals had bounds as illustrated in Fig. 6. 

The two major geophysical implications from this study are that there is not a strong, 
if any, resistivity contrast across the Moho, and that there is an electrical asthenosphere, of 
minimum thickness 60km, beginning at 150-190km depth. Both of these factors appear 
to have their counterparts in the various seismic models of the Baltic shield, with the 
comment by Theilen & Meissner (1979) that the Moho under northern Sweden is not a 
strong acoustic interface, and the interpretation of Nolet (1977), Cassell & Fuchs (1979) 
and Given & Helmburger (1980) of a compressional wave low-velocity layer, L VpL, with its 
top interface somewhere between 150-170 km. That an asthenosphere is observed under 
a shield region may be due to the fact that the geomagnetic investigations, and the majority 
of the seismic investigations, were undertaken near to the edge of the shield, i.e. at Kiruna 
in the former case, and the Blue Road seismic project data (Cassell & Fuchs 1979) and the 
NORSAR array data (Given & Helmburger 1980) in the latter case. This must be contrasted 
with the East European platform which does not display an electrical asthenosphere 
(Vanyan et al. 1977). However Patton (1980), in an analysis of data from the 'Northern 
Platforms and Shields', which included the East European platform, the Baltic shield, Green­
land and part of the Canadian shield, concluded that there must exist a shear wave low­
velocity layer, L YsL, between 80-250 km depth underlying the whole region. It may be 
significant that under the Canadian shield there is an L VsL from 125-275 km, without a 
corresponding L VpL (Wickens 1971; Wickens & Buchbinder 1980), whilst Reddy & Rankin 
(1971) report that there must be no large variation from a resistivity of 3500 D.m in the 
upper mantle. At Reddy & Rankin's (1971) longest period, ~ 500 s, the skin depth for a 
3500 D.m layer is over 600 km, which implies that there cannot be an electrical astheno­
sphere under the central Canadian shield, Hence, under the Canadian shield and the East 
European platform there exist L VsL's, without corresponding L VpL 's, or electrical astheno­
spheres, whilst under the Baltic shield there exists both an L VpL and an electrical 
asthenosphere. 

In attempting to derive a geotherm from the geoelectrical model and petrological 
information, it is glaringly obvious that insufficient information is known about the 
probable conditions in an asthenospheric layer. For solid crystalline olivine, the olivine 
geotherms for atmospheric pressure indicated by DHS and RSP x 10 (Duba et al. 1974; 
Shankland & Waff 1977) and the stippled area in between (Fig. 7), are inferred by the data. 
Curve RSP x 10 seems to be in accord with the relatively new dry garnet lherzolite geotherm 
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of Anderson (! 980), and lies below the anhydrous Iherzolite solidus. Alternatively, the data 
on solid ultramafic rocks of Rai & Manglmani (! 977), where the lower and the upper bounds 
('1' and 'u' respectively in Fig. 7) are for garnet and spinel lherzolite, and the shaded region 
is that for the p*-z* inversion, infer a much cold er mantle with a temperature at 100 km in 
accord with Tozer's (1967), Hall's (1977) and Anderson's (1980) geotherms, but which has 
a very small gradient thus approaching Ringwood's geotherm (Clark & Ringwood 1964) at 
150-200 km depth. However, the existence of a seismic L flpL implies a small fraction of 
partial melt. The triangle in Fig. 7 is for either a 2 per cent melt of RSP x 10 olivine, or a 3 
per cent melt of DHS olivine, at 50 kbar, as extrapolated from the factors given by Shank­
land & Waff (1977), with the assumption that the pressure effect on the basalt melt is zero, 
i.e. ~Vm == 0 in equation (1) of Shankland & Waff. A small partial melt in a mix of Rai & 
Manghnani's solid garnet Iherzolite and a basalt melt would not reduce the geotherm much 
below that marked 'I', or the calder bound of the shaded region. If there should be free 
water present, however, all these geotherms are above Kushiro et al. 's (1968) hydrous 
lherzolite solidus, hence much greater fractions of partial melt may be present inferring a 
colder mantle at 150--200 km depth. 

In conclusion, until more is known of the conditions within as asthenospheric layer, the 
temperature point indicated by the triangle can be considered an upper bound, with a 
probable lower bound being indicated by the hydrous Iherzolite solidus. 
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