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ABSTRACT

The energy sources for magnetotellurics �MT� at frequen-
cies above 8 Hz are electromagnetic waves generated by dis-
tant lightning storms propagating globally within the earth-
ionosphere waveguide. The nature of the sources and proper-
ties of this waveguide display diurnal and seasonal variations
that can cause significant signal amplitude attenuation, espe-
cially at 1–5 kHz frequencies — the so-called audiomagne-
totelluric �AMT� dead band. This lack of energy results in un-
reliable MT response estimates; and, given that in crystalline
environments ore bodies located at some 500–1000-m depth
are sensed initially by AMT data within the dead band, this
leads to poor inherent geometric resolution of target struc-
tures. We propose a new time-series processing technique
that uses localization properties of the wavelet transform to
select the most energetic events. Subsequently, two coher-
ence thresholds and a series of robust weights are implement-
ed to obtain the most reliable MT response estimates. Finally,
errors are estimated using a nonparametric jackknife algo-
rithm. We applied this algorithm to AMT data collected in
northern Canada. These data were processed previously us-
ing traditional robust algorithms and using a telluric-telluric
magnetotelluric �TTMT� technique. The results show a sig-
nificant improvement in estimates for the AMT dead band
and permit their quantitative interpretation.

INTRODUCTION

Time-varying, natural-source electromagnetic �EM� waves ob-
ervable on the earth’s surface at frequencies above about 8 Hz are
enerated by distant lightning activity and, at frequencies below
Hz, by the interaction of the earth’s magnetosphere with particles

jected by the sun �solar plasma�. The former are important for au-
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iomagnetotelluric �AMT� studies of upper crustal structures for en-
ironmental, energy, and resource exploration purposes, such as
roundwater contamination, geothermal exploration, and discovery
f economic mineralization. Lightning-induced waves propagate
round the globe in the electrically charged earth-ionosphere wave-
uide �Thomson, 1860; Wilson, 1920�, and they penetrate the earth
nd respond in amplitude and phase to the subsurface electrical con-
uctivity structure.

Properties of the waveguide and the frequency characteristics of
ightning display diurnal and seasonal variations that can cause sig-
ificant signal amplitude variations, especially in the 1–5 kHz so-
alled AMT dead band. These variations show an increase in ampli-
ude during the summer months in the northern hemisphere and at
ighttime, and a corresponding decrease during the winter months
nd daytime. Thus, one problem associated with applying the AMT
ethod for shallow ��3km� exploration can be the lack of signal in

ertain frequency bands during the desired acquisition interval. For
ore information on AMT source analysis, see Garcia and Jones

2002�.
Traditional processing of MT data was based on approximations

f the least-squares method and assumptions of an ergodic, Gaussian
tatistical model �Bendat and Piersol, 1971; Sims et al., 1971�, and
oth are sensitive to small amounts of anomalous data and uncorre-
ated noise. The inadequacy of the statistical model can cause the

agnetotelluric �MT� tensor to be strongly biased and unusable.
hese biases were discussed first in MT by Sims et al. �1971�; but

hey were known in other fields much earlier, particularly in econo-
etrics �Gini, 1921�, and were discussed in Reiersøl �1950�. The re-
ote reference �RR� method �Gamble et al., 1979� was developed to

ntroduce bias control in MT data processing.
The first use of such an unbiased estimator for transfer function

stimation again comes from econometrics �Reiersøl, 1941�, and in-
ependently from Geary �1943�; see Reiersøl �1950� and Akaike
1967�, in which remote reference fields were termed instrumental
ariables. The RR method consists of simultaneous recording �typi-
ally� the horizontal magnetic fields measured at a second site that is

ril 2008; published online 5 November 2008.
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F224 Garcia and Jones
ufficiently remote from the main site so that noise sources are un-
orrelated between the sites. Given the correct assumption that noise
ources at both locations are uncorrelated, this method is effective in
emoving the bias caused by uncorrelated noise. However, there ex-
st unusual noise sources �complex natural sources or cultural noise�
nd frequency bands �MT and AMT dead bands�, which can cause
he RR method to fail.

Coherence-sorting methods also have been applied. Data from
ow signal-to-noise-ratio frequency bands �e.g., MT or AMT dead
ands� have been treated with a presorting method to eliminate low
oherence segments �Egbert and Livelybrooks, 1996; Smirnov,
003�, although the method is not always useful �Chave and Jones,
997�.

The introduction of data-adaptive weighting schemes, sometimes
long with the RR method, have been shown to eliminate the influ-
nce of outliers in electric fields �Jones and Joedicke, 1984; Egbert
nd Booker, 1986; Chave et al., 1987; Chave and Thomson, 1989;
arsen, 1989�. Jones et al. �1989�, who compare different MT pro-
essing schemes applied to the same data set, document the superior-
ty of these robust processing methods. Schultz et al. �1993� inter-
reted the contamination of data collected using a large electrode ar-
ay ��1km spans�, with electrodes at the bottom of a large lake
Carty Lake� in northern Ontario, Canada, as the result of aurora
Northern Lights�. This interpretation led to the development of a ro-
ust processing technique with a leverage control that could detect
ontaminated data in electric and magnetic fields. More recently, Eg-
ert and Livelybrooks �1996� and Chave and Thomson �2003, 2004�
xtended the removal of outliers to the magnetic fields.

Finally, Trad and Travassos �2000� introduce an approach using
he wavelet transform. These authors use the discrete wavelet trans-
orm �DWT�. A series of robust weights were applied to the trans-
ormed data to remove noise. Subsequently, a robust processing
echnique was applied to the antitransformed filtered data.

Another key component of processing, which indeed is as impor-
ant as estimation of the response functions themselves, is the calcu-
ation of their confidence limits. Least-squares impedance errors
ased on Gaussian distributions typically are biased �Chave and
ones, 1997� and unable to provide reliable uncertainty estimates. In
omparison, nonparametric methods are distribution independent;
nd thus the error estimates are more accurate. The nonparametric
ackknife method of Richard von Mises �see Efron, 1982� for error
stimation was introduced to MT processing by Chave and Thomson
1989� and subsequently justified rigorously �Thomson and Chave,
991�.

These estimation techniques, initially developed for processing
ong-period MT data, also have been applied to process AMT data.
s mentioned previously, because of source characteristics the is-

ues related to problems in the AMT frequency band differ from
hose in the MT band; and these codes can fail to provide reliable es-
imates of AMT transfer functions at frequencies of 1 kHz through

kHz. In particular, at high latitudes often there is little observable
ignal; and the few transients that are recorded must be located per-
ectly in the time series, otherwise, the codes fail �Garcia and Jones,
002�. Garcia and Jones �2005� introduce a new methodology based
n the use of electric transfer functions between sites and a base sta-
ion, and on robust MT transfer functions from the base station re-
orded at night, to solve the problem of lack of energy in the AMT
ead band at high latitudes.
For nonperiodic, nonstationary time series, the Fourier transform
an give spurious results that have been solved to some extent with
he introduction of windowed Fourier transforms. As an alternative
pproach, the wavelet transform might have advantages compared
ith the Fourier transform for spectral analysis. Zhang and Paulson

1997� were the first to use wavelets, in their case the continuous
avelet transform �CWT�, for processing AMT data. In their work,

he CWT is used to localize high-energy events. Then a new coher-
nce thresholding technique, defined by the authors, permitted iso-
ating bad data points.

This new coherence function assumes that the diagonal compo-
ents of the impedance tensor are almost zero compared with the off-
iagonal elements �Zhang et al., 1997�. For this reason, this tech-
ique can fail in the presence of complicated three-dimensional ge-
logy or galvanic distortions �McNeice and Jones, 2001�. The use of
standard least-squares method to obtain the transfer functions also
akes this technique sensitive to the presence of strong noise. Nev-

rtheless, the CWT has good localization properties.
In this paper, we extend the work of Zhang and Paulson �1997�

hat uses the CWT as a means to obtain spectra of the time series.Af-
er calculating the wavelet spectra, the magnetic spectra are ana-
yzed to locate the high-energy events. These can be either signal or
oise, and for this reason we apply a coherence threshold method
nd a robust weighting technique to eliminate segments contaminat-
d by uncorrelated noise. This method is completed with the use of a
ackknife nonparametric error-estimate technique for the calculation
f confidence levels.

WAVELET TRANSFORM

In this section, we briefly describe the method of wavelet analysis.
eneral bibliography on wavelets can be found in Daubechies

1990�, Mallat �1998�, and Percival and Walden �2000�. A descrip-
ion of the wavelet transform as applied to geophysics can be found
n Foufoula-Georgiou and Kumar �1995�, and details about the ap-
licability of wavelet analysis can be found in Weng and Lau �1994�,
eyers et al. �1993�, and Torrence and Compo �1998�.
To analyze signal structures of very different sizes, it is necessary

o use time-frequency functions called atoms with varying time sup-
orts �an example of an atom would be the taper window used to cal-
ulate the Fourier transform�. The wavelet transform �WT� is capa-
le of providing the time and frequency information simultaneously,
ence giving a time-frequency representation of the signal. The
avelet transform is based on the two-parameter family of dilated

nd translated functions. Decomposing signals over this family of
unctions can be used to analyze time series that contain nonstation-
ry power at many different frequencies �Daubechies, 1990�.

Let � �t� be a fixed function �mother wavelet�, and consider a two-
arameter family of dilated and translated functions; thus

� b,s �
1

s
�� t � b

s
� , �1�

here s and b are the scale and translation parameters, respectively.
unctions in the family obtained from equation 1 also are known as
aughter functions. The term translation is used in the same sense as
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Robust processing ofAMT data F225
n the windowed Fourier transform: It is related to the location of the
indow as the window is shifted through the signal. This term obvi-
usly corresponds to time information in the transform domain.
owever, we do not have a frequency parameter, as we had for the
ourier transform. Instead, we have a scale parameter that is related

o the inverse of the frequency.
To be admissible as a wavelet, a function must satisfy certain
athematical criteria. First, a wavelet must have finite energy;

E � �
��

�

�� �t��2dt � � , �2�

here E is the energy of a function equal to the integral of its squared
agnitude, and the vertical brackets � represent the magnitude oper-

tor of � . If � �t� is a complex function, the magnitude must be found
sing its real and imaginary parts.

Second, considering �̂ �f� as the Fourier transform of � �t�, the fol-
owing condition must hold:

Cg � �
0

�

��̂ �f��2

f
df � � . �3�

his implies that the wavelet has no zero-frequency component,
ˆ �0� � 0; or, which is the same, the wavelet � �t� must have a zero

ean. Equation 3 is known as the admissibility condition �Farge,
992�, and Cg is called the admissibility constant. A third criterion
hat applies to complex wavelets is that the Fourier transform of the

other wavelet must be real and vanish for negative frequencies.
Given a time series, xn, with a time spacing � t and n � 0, . . . ,N
1, the wavelet transform of x with respect to � is defined as

Wg x�b,s� � �� b,s�x	 � �
��

��

dt
1

s
� *� t � b

s
�x�t� , �4�

b � R, s � 0,

here �*� indicates the complex conjugate. The continuous wavelet
ransform of a discrete sequence xn similarly is defined as the convo-
ution of xn with a discrete scaled and translated version of the moth-
r wavelet � 0�h�; thus

Wn�s� � 

n��0

N�1

xn · � *� �n� � n�� t

s
� . �5�

quation 5 measures the variation of x in the neighborhood of n,
hose size is proportional to s. Mallat �1998, chap. 6� proves that
hen the scale s goes to zero, the decay of the wavelet coefficients

haracterizes the regularity of x close to n; in other words, the lower
he scale, the more localized the information that is obtained.
According to equation 5, to calculate the WT of a time series of
ength N requires N convolutions. Given that in the Fourier domain
he N convolutions can be done simultaneously, the discrete Fourier
ransform �DFT� can be employed to speed up calculation of the
WT �Kaiser, 1994�. The DFT of time series xn can be defined as

x̂k �
1

N


n�0

N�1

xne�2� ikn/N, �6�

here k � 0, . . . ,N � 1 is the frequency index.
Applying the convolution theorem, the wavelet transform �equa-

ion 5� can be rewritten as the inverse Fourier transform of the prod-
ct, or

Wn�s� � 

k�0

N�1

xk�̂ *�s�k�ei�kn� t, �7�

here the angular frequency �k is defined as

�k � 

2�k

N� t
, k �

N

2
,

�
2�k

N� t
, k �

N

2
.� �8�

sing equation 7 and a standard Fourier transform routine, the CWT
an be calculated �for a given scale s� at all n data points simulta-
eously and efficiently.

Because we are dealing with finite time series and using a Fourier
ransform that assumes these are cyclic, we have edge effects at the
eginning and end of the wavelet power spectrum. The cone of influ-
nce �COI� is the region of the wavelet spectrum in which edge ef-
ects become important. In this work, we have followed the defini-
ion of the COI by Torrence and Compo �1998� as the e-folding time
or the autocorrelation of wavelet power at each scale. The COI also
efines at each scale the decorrelation time for a single spike in the
ime series.

The algorithm that we have developed accepts a choice of two
other wavelets, either the Morlet or the Paul �Torrence and Compo,

998� wavelet. The one that we have found most successful in our
ork is the Morlet wavelet �Figure 1�, and we restrict discussion in

his section to this type of function. The Morlet wavelet was intro-
uced for geophysical exploration by Goupillaud et al. �1984�; it
onsists of a plane wave localized by a Gaussian function �Grossman
nd Morlet, 1987�. Thus

� 0�s� � �1/4ei�0	e�s2/2, �9�

here �0 is the nondimensional frequency, in our work equal to
�2/log�2�.
Strictly speaking, the Morlet wavelet, equation 9, is not a wavelet

ecause the admissibility condition, equation 3, does not hold. How-
ver, if �0 �0 is large enough; or, which is the same, if the scale s is
arge enough, the negative frequency components of � are small
ompared with the progressive component �Mallat, 1998�; and this
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F226 Garcia and Jones
atisfies the admissibility condition. The parameter �0 allows trade-
ff between time and frequency resolutions. The particular choice of
0 in this work avoids problems with the Morlet wavelet at low

cales �high temporal resolution�, at the same time that it optimizes
ocalization properties of the wavelet in the temporal and spectral
omains. Smaller values will improve the temporary localization
roperties while worsening the frequency localization, whereas
arger values will emphasize the localization in the frequency do-

ain.
The relationship between the equivalent Fourier period and the

avelet scale can be derived analytically for a particular wavelet
unction transforming a cosine wave of a known frequency, and
omputing the scale s at which the wavelet power spectrum reaches
ts maximum �Torrence and Compo, 1998�. For the Morlet wavelet,
he Fourier period is expressed as

T �
4�s

�0 � �2 � �0

. �10�

Using equation 7, by varying the wavelet scale s and translating
long the localized time index n, one can construct an image show-
ng the amplitude of any features versus the scale and how this am-
litude varies with time. We used this fact to localize high-energy
vents better in the time series. To see the relationship between the
avelet and Fourier spectra, the global wavelet spectrum must be in-

roduced. This is defined as the average of the wavelet spectra over
cales,

W̄2�s� �
1

N


n�0

N�1

�Wn�s��2. �11�

hen smoothed, the Fourier spectrum approaches the global wave-
et spectrum. Percival �1995� shows that the global wavelet spec-
rum �equation 11� provides an unbiased and consistent estimator of
he true power spectrum of a time series.
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Imag

igure 1. Morlet wavelet. Left: Time representation of the Morlet m
rum of the mother wavelet for four dilations �see legend�. Note that e
Figure 2 shows 1024 points ��0.025 s� of an electric field �east-
est component� and the corresponding magnetic field �north-south

omponent� of some time series analyzed herein. This particular
egment displays the arrival of a magnetotelluric transient caused by
istant lightning. Figure 3 shows the wavelet spectrum for the time
eries in Figure 2. As can be observed, the spectrum has minimal
ower in the AMT dead band. The arrival of a transient caused by
istant lightning enhances the energy in the AMT dead band, al-
hough it still displays a minimum centered at 2000 Hz for the mag-
etic field.

Localizing high-energy events can be the key to obtaining good
stimates in the dead-band, although there are two problems. One
roblem is caused by lack of signal, even in presence of a transient;
he other is caused by the presence of noise. To overcome the prob-
em with noise, we propose the use of a robust remote reference tech-
ique to downweight those noisy segments and allow for a selection
f clean high-energy events.

ROBUST PROCESSING

Jones and Joedicke �1984� propose a heuristic, jackknife robust
rocessing method for MT data, based on maximizing coherence.
his method later was modified to minimize variance and extended

or multiple remote references �method 6 in Jones et al., 1989�. Eg-
ert and Booker �1986� and Chave and Thomson �1989� introduced
ormal, M-regression robust processing methods in MT. Chave and
homson �2004� extend the methods to allow for several reference
ites. In this work, we consider a single reference site. The following
ection focuses on the use of robust methods with one remote refer-
nce site.

After the time series have been transformed into the time/frequen-
y domain, the next step is to calculate the transfer functions. In the
bsence of noise, the fundamental MT equation �Dmitriev and Ber-
ichevsky, 1979� can be expressed as
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avelet for a time parameter �0 � ��2/log�2�. Right: Fourier spec-
ectrum has been scaled down by its corresponding scale factor.
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Robust processing ofAMT data F227
e � zb , �12�

here e and b are two vectors containing the spectra of variations of
he electric and magnetic fields, respectively; and z is a 2
2 imped-
nce tensor. To solve this equation when the error distribution is not
ormal, particularly when the errors are long-tailed, the robust re-
ression can be employed �Box, 1953�. In general, a robust statisti-
al estimator is the one that is insensitive to small departures from
dealized assumptions for which the estimator is optimized �Jones et
l., 1989�.

The most common general method of robust regression is the
-estimation, introduced by Huber �1964�. This method uses the

ollowing linear model of equation 12,

ei � biz � �i, �13�

here � denote the residuals, and i is the sample number. Robust pro-
edures minimize an objective or loss function that is a function of
he residuals. The robust procedure that we have used in this work
ses a weighted least-squares method that minimizes 
�i

2�i
2 �Egbert

nd Booker, 1986; Chave and Thomson, 2004�, where � represents
he robust weights.

However, the solution to this system of equations is not trivial, be-
ause the weights depend upon the residuals; the residuals depend
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igure 2. Example of the time series used in this work �site 001�. Top
eld �Ey� recorded with an azimuth of 65°. These two time series dis
umber. In this case, it covers 1024 points, equivalent to 25 ms. No
hey are shown here for visualization purposes.
pon the estimated coefficients; and the estimated coefficients de-
end upon the weights. An iterative solution �called iteratively re-
eighted least-squares, or IWLS� therefore is required:

� Select initial estimates z�0�, such as the least-squares estimates.
� At each iteration t, calculate residuals �i

�t�1� and associated
weights �i

�t�1� � ���i
�t�1�� from the previous iteration.

� Solve for the new weighted least-squares estimates using the
following equation, which is a generalized solution to the gen-
eral least squares for equation 13,

z�t� � �bHw�t�1�b��1bHw�t�1�e , �14�

where b is the model matrix corresponding to the input channel,
with bH as its conjugate Hermitian; and w�t�1� � diag��i

�t�1��
is the current weights matrix.

teps 2 and 3 are repeated until the variances of the residuals con-
erge. The convergence is defined either by not improving its value
r by obtaining a change in it between iterations below a threshold
alue.

The procedure followed in this work is described with more detail
n Chave and Thomson �1989, 2003, 2004�. It consists of initially
erforming a few iterations using the Huber estimator as objective or

,100 239,200 239,300 239,400 239,500 239,600

le number

etic field �Hx� recorded with an azimuth of �25°. Bottom: Electric
ransient caused by distant lightning. The abscissa shows the sample
the system response has not been corrected from these time series.
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F228 Garcia and Jones
oss function. Then, using the more severe Thomson estimator, more
ata are downweighted. Depending on data quality, this procedure
akes only between three and eight iterations for each objective func-
ion.

The remote reference method uses electromagnetic fields ac-
uired at a distant location to minimize the local variance of the re-
iduals. Following Chave and Thomson �1989�, the weighted least-
quares solution equivalent to equation 14 for a single remote refer-
nce can be written

z�t� � �fR
Hw�t�1�b��1fR

Hw�t�1�e , �15�

here fR is the remote field used as a reference. The robust procedure
or the remote reference case is the same as the one described in this
ection. A more general form of the IWLS �equation 14� can be
ound in Chave and Thomson �2004�; it includes the use of several
eferences sites.

When the mean and variance of a set of independent and identical-
y distributed data in the time domain are known, it is a simple task to
nfer estimates of standard errors. However, it is common that data
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igure 3. Morlet wavelet transform of the time series used in Figure 2
e seen that despite the arrival of a transient, the energy levels in the
orrected in the spectra.
ets have mixed or very complicated �e.g., multivariate� error distri-
utions; there are outliers, or an unknown number of degrees of free-
om caused by correlation and heteroscedasticity. In such cases,
onparametric methods are more appropriate to estimate the bias
nd standard error in a statistic when a random sample of observa-
ions is used to calculate it.

In this work, we have used the jackknife method to calculate the
onfidence levels of the responses. The basic idea underpinning the
ackknife estimator lies in systematically recomputing the statistic
stimate leaving out one observation at a time from the sample �so-
alled delete-one estimates�. From this new set of observations for
he statistic, an estimate for the bias and an estimate for the variance
f the statistic can be calculated �Thomson and Chave, 1991�.

Thomson and Chave �1991�, among others, studied in detail the
pplication of the jackknife method to the regression problem. To
olve the linear equation 14, a new set of pseudovalues can be used
Hinkley, 1977�, so that

z̃i � ẑ � N�1 � hi��ẑ � ẑî� , �16�
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here z̃ is the jackknifed estimate of the impedance z; ẑ is an esti-
ate of the impedance; ẑî is the estimate of the impedance based of

he ith subset �the subset with the ith observation deleted�; and hi is
he ith element of the diagonal of the hat matrix.

The hat matrix is a projection matrix from e into the column space
f z, defined as

H � b�bHb��1bH, �17�

here the superscript H denotes the Hermitian conjugate. Finally,
he variance estimate of the impedance z can be determined using

var�ẑ� �
1

N�N � p� 

i�1

N

�z̃i � ẑ��z̃i � ẑ�H, �18�

here p is the number of columns in z.
Diagonal elements of the hat matrix measure the distance of single
odel points from the center of the model, and the lack of balance is

eflected in their size. This allows for control of the leverage or influ-
nce that elements of b have in the final estimate of z �Chave and Th-
mson, 2003�.

ROBUST WAVELET PROCESSING ALGORITHM

The previous two sections briefly described the background infor-
ation on the procedure followed in this work. The algorithm we

ave designed calculates wavelet spectra of the electric and magnet-
c time series recorded at a site, and the reference fields recorded at a
emote site. From those spectra, we derive MT response function es-
imates using robust methods.

The reason for choosing a particular wavelet has to do with the
ype of problem to be explored. In magnetotellurics, the spectra are
alculated to obtain the transfer functions; thus a complex, nonor-
hogonal wavelet is appropriate. As the electromagnetic spectra are
moothly varying with frequency, the use of smooth, undulating
avelets is appropriate. The current algorithm allows use of two
other wavelets, either the Morlet or the Paul. In our experience, the
orlet wavelet is better suited for magnetotellurics because it offers
better trade-off between time and frequency resolution, whereas

he Paul wavelet has better localization properties in the time do-
ain.
After the wavelet spectra have been derived, the ensemble then is

urged of those segments for which the amplitude spectra are about
he noise level of the magnetometers. This value can be set to the val-
e provided by the instrument manufacturer. It has been shown �Gar-
ia and Jones, 2002� that in severe quiet times in theAMT dead band,
he data recorded by the magnetometers correspond to their noise
evels. In addition, those segments located outside the COI of the
avelet transform are purged also. To avoid rejecting too many seg-
ents, and because computer memory is no longer an issue, we usu-

lly calculate the CWT of the whole time series; the alternative is to
hop them into smaller sections, saving memory but sacrificing seg-
ents at the edges.
The next stage consists of the application of a series of coherence

lters to the spectra, which permits detection of uncorrelated sec-
ions. Two kinds of coherence functions are used, a classical coher-
nce and a wavelet coherence. The classical thresholding technique
hat is applied initially to the spectra uses the auto and cross-spectra
f the EM time series and can be defined as

� 2 �
��Wab	�2

�Waa	�Wbb	
, �19�

here �·	 indicates smoothing in time. Those sections in which co-
erence is below a specific threshold defined by the user are discard-
d.

A wavelet coherence technique �Torrence and Webster, 1999� is
pplied. Whereas the classical coherence technique searches for co-
erent segments along the temporal axis, the wavelet coherence
unction allows for a search for noncoherent segments across scales
nd time axes. The wavelet squared coherence function is defined as

� wavelet
2 �

��s�1Wab	�2

�s�1�Waa�2	�s�1�Wbb�2	
, �20�

here �·	 indicates smoothing in both time and scale. The factor s�1

s used to convert to an energy density.
In general, low and high power segments are rejected, because

hey are susceptible to either not being coherent or being strongly af-
ected �overwhelmed� by coherent noise. Lower and upper values
or the threshold can be set in the algorithm. In some instances, noise
an be correlated severely between the channels; and the upper
hresholding permits eliminating some of this noise. This method
hould be used with care because it also can eliminate clean sections.
he remaining segments are used for the final response calculation.
t this point, the responses are calculated and will be used as a start-

ng estimate for the robust processing and as nonrobust estimates.
The next step consists of calculation of the hat matrix for later use

n the jackknife calculation of confidence intervals. The hat matrix is
sed in statistics to identify high leverage points that are outliers
mong the independent variables. The algorithm that we have de-
igned allows one to set a thresholding level based on the diagonal of
he hat matrix, although the tests that we have run suggest no im-
rovement of the final responses. After this step, the robust iteration
rocess step is initiated, and it downweights the remaining noisy
egments. The final stage involves calculation of the confidence lev-
ls using a jackknife procedure.

The algorithm is written in standard FORTRAN 95. Each of the
ime series used in this work consists of 262,144 points with a sam-
le rate of 40,960 Hz �6.4 s in total time length�; the total processing
ime is about two minutes on a Pentium PC.

EXAMPLE: THE NORMAN TOWNSHIP DATA SET

We applied the robust code that we present here to data acquired in
uly 2000 in Norman Township �Sudbury, Ontario, Canada�. This
xperiment was designed to test a new telluric-telluric magnetotellu-
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ic methodology �TTMT� proposed by Garcia and Jones �2005�, and
nvolved acquiring four profiles of AMT data with a remote refer-
nce site. The TTMT method consists of the use of electric-field day-
ime measurements at all stations �profile, base, and remote�, and
ighttime measurements at the base and remote stations. Using the
ransfer functions between daytime and nighttime time series, a
TMT response function can be calculated for measurements ac-
uired during daytime.

In this work, we process data from the northern profile of the sur-
ey �Figure 4�, and compare the resulting estimates with previous
est estimates from robust, conventional MT processing. Because
he experiment was designed to test the TTMT method, data were ac-
uired at different times of the day. Table 1 summarizes site occu-
ancy of data recorded on July 20, 2000. Unfortunately, for site 006
he remote reference was not recording. We have used the only site
vailable at that time, 004, as a reference.

Processing consists of four fundamental steps. First, time series
re transformed into the spectral domain using wavelet methods.
econd, power and coherence thresholding is applied to eliminate
oisy sections. Third, a robust, least-squares technique is used to ob-
ain the impedances. Fourth, the confidence intervals are calculated
sing the nonparametric jackknife method.

Processing of data begins with the transform of the EM time series
nto the wavelet domain. The data sets that we use in this example
ave 262,144 points and were acquired using a sampling rate of
0,690 Hz. To avoid rejecting segments because of the COI, we
ave not split the time series into short segments, and thus, only a
ew data points at the beginning and end are affected. This operation
sually takes �1 minute of computer time in a normal Pentium PC
or six electromagnetic channels �four locals and two remotes�. At

the same time, deconvolution of the instrument
response is applied also; and scales are converted
to frequencies.

The second step consists of filtering data points
using coherence and wavelet coherence thresh-
olding techniques. The amount of data that are
eliminated depends on the values of thresholding
limits set by the user and the quality of the data.
Figures 5–10 show the MT responses of sites ana-
lyzed in this study and a plot of percentage of data
left after two-stage coherence thresholding. This
later procedure eliminates, in most cases, more
than 90% of the data. For longer periods, we have
found that the coherence thresholding is not as ef-
ficient as in the AMT dead band, and we usually
relax this thresholding; thus, the amount of data
eliminated is smaller. The data that are not elimi-
nated by coherence thresholding are used in the
impedance tensor estimates of final responses us-
ing the IWLS technique described previously.

On the left panels of Figures 5 through 10 are
the responses obtained from the code developed
in this work; on the right are the responses ob-
tained using a robust Fourier transform algorithm
�bounded influence, remote reference processing,
�BIRRP�, Chave and Thomson, 2004�, which
represent the best conventional MT responses
that we could obtain. The Fourier responses show
scatter at all frequencies, especially in the AMT
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T �left� and
es and white
ge of data re-
able 1. Table showing site occupancy (GMT-5:00 EST) for
ites used on July 20, 2000.

Site name occupancy �local time, GMT-5:00 EST�
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igure 4. Location of the northern profile with sites used in this work
rom Norman Township experiment that tested a new �TTMT� meth-
dology to acquire and process data to improve responses in the
MT dead band. The site marked with a diamond indicates the loca-

ion of the remote reference site �Garcia and Jones, 2005�. This area
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IRRP �right� methods. Black symbols correspond to the zxy impedanc

ymbols to the zyx impedances. On the bottom panel is a plot of the percenta
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ead band; whereas for the wavelet responses, the scatter is reduced
o a few frequencies in the dead band.

As mentioned earlier, the nature of EM induction in the earth re-
ults in MT responses that must be smoothly varying with frequency.
herefore, we can consider the responses obtained with the new
avelet-processing scheme superior to those obtained with a Fouri-
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igure 6. Same as Figure 5 at site 002.
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r method. The jackknifed confidence levels also are larger in the
MT dead band, suggesting either larger variability or few segments
eing used in the final calculation of MT responses.

The responses from sites 001, 005, and 006 show some important
catter at theAMT dead band.Amethod for analyzing this lack of re-
iable responses in this band, for these sites, is to calculate the global

wavelet �equation 11� and its standard deviation
to show the variability of spectra at each frequen-
cy. Figure 11 shows the global wavelet spectra for
site 006 �continuous line� and the upper and lower
limits of the standard deviation �dashed lines�.
This plot shows that signal levels of the magnetic
fields �top figure� are very small in the AMT dead
band and that there is very little variability in this
band. This results from the lack of sufficient sig-
nal energy in this band, causing the magnetome-
ter to record only noise. The processing method
breaks down because it cannot find any suitable
magnetic spectra in theAMT dead band.

For the electric channel �bottom figure�, the sit-
uation is not as severe. This is normal behavior
and the basis for development of the TTMT meth-
od by Garcia and Jones �2005�. This plot shows
that even when a transient is localized, the mag-
netic signal that it carries might not be measur-
able in theAMT dead band.At the same time, and
because signal levels are so low, this demon-
strates that, when processing data in the AMT
dead band, it is important to eliminate noise in the
electric field, rather than the magnetic field, and
to accurately select the best segments.

These data were collected in July, in the middle
of the Northern Hemisphere summer, which is
statistically an ideal time for undertaking AMT
measurements �Garcia and Jones, 2002�. Howev-
er, there is also strong daily variation from atmo-
spheric ionization in the daytime, resulting in in-
creased atmospheric conductivity and energy at-
tenuation that causes the lack of signal during
daytime.

The new results are superior to the ones ob-
tained previously with BIRRP and the TTMT
method, although the new algorithm uses the
same techniques to solve the robust least-squares
method and obtain final responses. Use of the
CWT and the coherence threshold seem to be fun-
damental to improving responses in the AMT
dead band.

Our code is designed for processing high-fre-
quency data in the AMT band, but we have tested
the present algorithm with longer period data.
The results are not as satisfactory, and BIRRP and
other processing codes usually give better results.
For longer periods, the signal is not arriving in
bursts of energy �transients�; instead, bursts of
higher amplitudes usually are caused by noise.
Implementation of our approach for longer peri-
ods requires a redesign of the algorithm.
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CONCLUSIONS

We developed an algorithm to perform the continuous wavelet
ransform, using Morlet wavelets, of high-frequency audiomagneto-
elluric �AMT� data, focusing on obtaining superior estimates in the
MT dead band of 1 kHz through 5 kHz. After wavelet estimation
f spectra, initial selection of “good” segments is performed using
lassical and wavelet coherence thresholding. The algorithm uses a
obust iterative solver to obtain reliable responses, and the confi-
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nd can explain the poor results from the processing. The inset plot
oom around the dead band.
dence levels are calculated using a nonparametric
jackknife technique.

AMT data from northern Ontario were used to
test the code. These data were processed previ-
ously using a Fourier transform technique and a
recent telluric-telluric magnetotelluric �TTMT�
technique. Estimates obtained using the new al-
gorithm are a significant improvement over pre-
vious results, and their quality �low scatter, small-
error estimates� allow for their quantitative inter-
pretation. There are instances, as in certain times
of day, for which the wavelet-processing algo-
rithm could not provide reliable responses in the
AMT dead band.

Calculating the spectral standard deviation for
one of these sites, we demonstrate that the mea-
sured magnetic fields show very little variability
in the dead band. This is not the same in the elec-
tric fields, which is consistent with our earlier re-
sults; and our suggestion that at AMT dead band
frequencies, one will obtain more stable esti-
mates using electric fields as the remote referenc-
es rather than magnetic fields. Overall, we dem-
onstrate that because of the lack of signal, it is
very important to use robust techniques to avoid
introducing spurious segments in the final calcu-
lation of the transfer functions.

This work also shows that the location and use
of high-energy events �transients� are insufficient
to ensure good-quality responses. The AMT data
from northern Canada show in some instances a
minimum of energy and a lack of variability,
proving that even the few transients that arrive at
the site location do not raise the energy level; and
this effect is worse in sites occupied later in the af-
ternoon �005 and 006�.
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